Final Formulas

Final Formulas - Formulas for Final Exam • Creating a...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Formulas for Final Exam • Creating a condence interval for µ, the margin of error is tα/2 (n−1) s √ n . • Testing for a population mean: ¯ X − µ0 √ ∼ t(n−1) s/ n • Testing for the dierence between two means in independent samples: ¯ ¯ (X1 − X2 ) − D0 s2 1 n1 + s2 2 n2 ∼ t(min{n1 −1, n2 −1}) • Testing for the dierence between two means in paired samples: ¯ d − µd √ ∼ t(n−1) sd / n • Testing for whether two categorical variables are independent: i j r i cj (fij − eij )2 ∼ χ2I −1)(J −1) where fij = ( eij n 1 • Correlation: rXY = n sXY 1 where sXY = (xi − x)(yi − y ) ¯ ¯ sX sy n − 1 i=1 • Regression: (xi − x)(yi − y ) ¯ ¯ sY = rXY 2 (xi − x) ¯ sX = y − b1 x ¯ ¯ SSE = (rXY )2 where SSE = = 1− SST b1 = b0 r2 (yi − yi )2 and SST = ˆ • Regression standard error s 1 SSE n−2 = • Condence interval for µY at x0 : (x0 − x)2 ¯ 1 + n (xi − x)2 ¯ (n−2) y ± tα/2 s ˆ • Prediction interval for Y at x0 : (n−2) y ± tα/2 s ˆ 1+ 2 1 (x0 − x)2 ¯ + (xi − x)2 ¯ n (yi − y )2 ¯ ...
View Full Document

Page1 / 2

Final Formulas - Formulas for Final Exam • Creating a...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online