Heisenber1 -...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Heisenberg's achievement came at a time when all of his colleagues were working on  different tangents, and with no systematic approach to the answers they all desired.  Nevertheless, their topics of research often complemented each other in unexpected  ways. While Born and his new assistant Pascual Jordan were working on the quantum  theory of aperiodic systems, Heisenberg returned to the problem of virtual oscillators in  the atom. The amplitude of the oscillations could be broken down to a Fourier series,  but what Heisenberg recognized was that this function had continued to use classical  relationships. Assuming that the basic Fourier function held true on the quantum level,  he then set about reinterpreting the frequencies and amplitude with quantum principles  in mind, as he had in formulating the Zeeman principle. Since the amplitudes of classical motions could be squared to find the intensity of the 
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/26/2011 for the course HIST 101 taught by Professor Womer during the Fall '08 term at Texas State.

Ask a homework question - tutors are online