{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Applied Finite Mathematics HW Solutions 74

# Applied Finite Mathematics HW Solutions 74 - 72 EXERCISES...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 72 ' EXERCISES 3.7 1 2 —3 13 —> 0 H3 2 ~13 -—31 0 0 0 'When we convert the last row to an equation, We obtain 0 = —31, an impossibiiity. The system has no solutions; it is inconsistent. l .11 4 11. Consider ﬁnding the inverse of the coefﬁcient matrix A = (1 3 45) . 1 1 -—1 1 —1 4 1 O 0 1 w1 4 1 0 0 ' 1 3 —6 U 1 0 R; —> —R1 + R; -—r 0 4 —1D —1 1 0 R2 —> —2R3 —I— R; 1 1 -1 0 0 1 R3 —¥ —R1 + R3 0 2 -5 -1 0- 1 1—14 —>000 02—5 1 0 0 1 I —2 —1 0 1 Since the inverse matrix does not exist, we consider the augmented matrix. 1 —1 4 o 1 —1 4 e 1 3 —s 0 Rg—r—R1+R2 —. 0 4 —10 0 R2—¥R3 1 1 _1 0 Rg—r—R1+Ra e 2 —5 e R3—>R2/2 . 1 H1 4 0 1 —1 4 e —: 0 2 ~5 0 —: 0 2 —5 0 Rz—FR2/2 0 2 “5 D)R3—>—~R2+R3 (o 0 u o) _ I -—-1 4 —) D 1 —5/2 D U U o 1 0 3/2 0 R1—>R2+R1 —» o 1 —5/2 0 o 0‘ o 0 D D We now convert this augmented matrix to an equivalent system of equations, 32: \$+-§'—-U, 52: ””3"” The system therefore has an inﬁnity of solutions, - 33 52: . chm—f, y—-2--, zarbitrary. 2 2 —3 12. Consider ﬁnding the inverse of the coefﬁcient matrix A = 2 1 —1 . 3 —2 1 22—3100 22—3100R1—rR3 2 1 -'1 D 1 D —1 2 I —1 0 1 U .3 H2 1 D 01 Rs—rﬁR1+Rs 1 *4 4 -1 01 R3—rR1 —1_01 21—2 ' 1 —4 4 —} 2 l —1 3 0 —2 Ra—r—Rg-FR3 410 1 1 —4 4 0 1 o Rg—r—2R1+R2—b o 9 —9 2 2 —3 1 o o Raﬁ—231+R3 o 10 —1'1 _'_A I____L__4.I_ _ YY_:_.__:I.. -fll--!J-L- “4“...4--- I7...nL_-__..A.._K:.u. 2.. ﬁnd nu L. a." :. “OJ—DI" ML:L:‘AA I! "fl—“H‘s ...
View Full Document

{[ snackBarMessage ]}