HW7sol

HW7sol - ME 576 Homework#7 1 Bollinger 8.7 Δθ 2 error(E...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ME 576 Homework #7 1. Bollinger 8.7 Δθ 2 error (E) Δθ R 2 The error, E, is ⎛ ⎝ E=R ⎜ 1 − cos θ⎞ ⎟ 2⎠ Since R is 5” and max. error should be 0.001” E⎞ ⎛ Δθ = 2 cos −1 ⎜ 1 − ⎟ R⎠ ⎝ ⎛ 0.001 ⎞ =2cos-1 ⎜ 1⎟ = 0.04rad = 2.29° 5⎠ ⎝ The length of the straight line segment is L = 2R sin Δθ = 2 × 5 × sin(0.02) = 0.200" 2 Time required to traverse is Δt = L υ = 0.200" 60(s) = 0.040sec 300" (min) B.C. for the first three segments θi x (ti ) = R cos(θ i ) 0 0.00 π 1 0.04 π − 0.04 2 2 0.08 3 ti 0.12 2 π − 0.08 2 π − 0.12 2 Equations for linear interpolation x (t ) = x (t i −1 ) + [t - ti -1 ] x (ti ) − x (ti −1 ) ti - ti −1 y (ti ) − y (ti −1 ) y (t ) = y (t i −1 ) + [t - ti -1 ] ti - ti −1 y (ti ) = R sin(θ i ) 0.000 i 5.000 0.200 4.997 0.400 4.985 0.599 4.965 2. Bollinger 8.10 ⎡ ⎛ dy ⎞2 ⎤ ⎛ dx ⎞2 x + y = υ ⇒ ⎢1 + ⎜ ⎟ ⎥ ⎜ ⎟ = υ 2 ⎢ ⎝ dx ⎠ ⎥ ⎝ dt ⎠ ⎣ ⎦ 2 2 2 dy = 1.5 dx t =0 dy = 1.17 dx t =4 R = ⎡r (ti ) r (ti ) r (t f ) r (t f ) ⎤ ⎣ ⎦ r (t) = A ⋅ b(t) Segment 1. ⎡1 R1 = ⎢ ⎣1 2.77 4.16 ⎡0 ⎢ 0 B1 = ⎢ ⎢0 ⎢ ⎢1 ⎣ 0 0 1 0 5⎤ 0⎥ ⎦ 4 4 (1.33)3 (1.33) 1.33 1 2 3(1.33) 2 ⎤ ⎡0 ⎥⎢ 2(1.33) ⎥ ⎢0 = 1 ⎥ ⎢0 ⎥⎢ 0 ⎥ ⎣1 ⎦ 0 0 1 0 2.37 1.78 1.33 1 5.33 ⎤ 2.67 ⎥ ⎥ 1⎥ ⎥ 0⎦ ⎡0 0 2.37 5.33 ⎤ ⎢ ⎥ ⎡1 2.77 4 5 ⎤ ⎢0 0 1.78 2.67 ⎥ A 1 = R ⋅ B −1 = ⎢ ⎥ 1⎥ ⎣1 4.16 4 0⎦ ⎢0 1 1.33 ⎢ ⎥ 1 0⎦ ⎣1 0 ⎡1.8413 -2.8478 2.7735 1 ⎤ =⎢ ⎥ ⎣-0.1911 -1.1779 4.1603 1⎦ −1 Segment 2. ⎡4 R2 = ⎢ ⎣4 5 0 5⎤ 0⎥ ⎦ 7 2 ⎡(1.33)3 ⎢ (1.33) 2 B2 = ⎢ ⎢ 1.33 ⎢ ⎢1 ⎣ ⎡ 2.37 ⎢1.78 =⎢ ⎢1.33 ⎢ ⎣1 ⎡3.0938 A2 = ⎢ ⎣1.6875 3(1.33) 2 (2.66)3 2(1.33) 1 0 (2.66) 2 2.66 1 5.33 18.96 2.67 1 0 7.11 2.67 1 -18.5625 -10.1250 3(2.66) 2 ⎤ ⎥ 2(2.66) ⎥ 1⎥ ⎥ 0⎥ ⎦ 21.33⎤ 5.33 ⎥ ⎥ 1⎥ ⎥ 0⎦ 38 18 -21⎤ -6 ⎥ ⎦ Segment 3 ⎡7 R3 = ⎢ ⎣2 5 0 ⎡18.96 ⎢ 7.11 B3 = ⎢ ⎢ 2.67 ⎢ ⎢1 ⎣ ⎡ 2.1086 A3 = ⎢ ⎣ 0.0286 10 3.25 ⎤ 4.5 3.8 ⎥ ⎦ 21.33 43 5.33 1 0 42 4 1 -21.7427 1.1392 3(4) 2 ⎤ ⎡18.96 ⎥⎢ 2(4) ⎥ ⎢ 7.11 = 1 ⎥ ⎢ 2.67 ⎥⎢ 0 ⎥⎣1 ⎦ 75.9776 -6.6872 21.33 5.33 1 0 -80.9776 ⎤ 11.1862 ⎥ ⎦ 64 16 4 1 48 ⎤ 8⎥ ⎥ 1⎥ ⎥ 0⎦ 3. Bollinger 8.10 ⎡ ⎛ dy ⎞2 ⎤ ⎛ dx ⎞2 x + y = υ ⇒ ⎢1 + ⎜ ⎟ ⎥ ⎜ ⎟ = υ 2 ⎢ ⎝ dx ⎠ ⎥ ⎝ dt ⎠ ⎣ ⎦ 2 2 2 dy = 1.5 dx t =0 dy = 1.17 dx t =4 R* = [r * (0) r * (0) r * (1) r * (1)] r * (ui ) = A * ⋅b * (ui ) Segment 1. ⎡1 * R1 = ⎢ ⎣1 2.77(1.33) 4.16(1.33) ⎡ 2 -3 ⎢1 -2 * −1 B1 = ⎢ ⎢ -2 3 ⎢ -1 ⎣1 0 1 0 0 ⎡1 * * * A1 = R1 ⋅ B1 −1 = ⎢ ⎣1 4 4 5(1.33) ⎤ ⎥ 0 ⎦ 1⎤ 0⎥ ⎥ 0⎥ ⎥ 0⎦ 3.68 5.53 4 4 ⎡ 2 -3 6.65⎤ ⎢1 -2 ⎢ 0 ⎥ ⎢-2 3 ⎦ ⎢ -1 ⎣1 ⎡ 4.33 -5.03 3.69 =⎢ ⎣-0.47 -2.07 5.53 0 1 0 0 1⎤ 0⎥ ⎥ 0⎥ ⎥ 0⎦ 1⎤ 1⎥ ⎦ Segment 2. ⎡4 R* = ⎢ 2 ⎣4 5(1.33) 0(1.33) 5(1.33) ⎤ ⎥ 0 ⎦ 7 2 ⎡ 7.30 * A* = R * ⋅ B1 −1 = ⎢ 2 2 ⎣ 4.0 -10.95 6.65 -6.00 0 4⎤ 4⎥ ⎦ Segment 3 ⎡7 R* = ⎢ 3 ⎣2 5(1.33) 0(1.33) 10 4.5 ⎡ 4.97 * A * = R * ⋅ B1 −1 = ⎢ 3 3 ⎣0.05 r (t) = A ⋅ b(t) ⎧ui 3 ⎫ ⎪ 2⎪ ⎧ xi (t ) ⎫ * ⎪ui ⎪ ⎨ ⎬ = Ai ⎨ ⎬ ⎩ yi ( t ) ⎭ ⎪ui ⎪ ⎪1 ⎪ ⎩⎭ ⎧3ui 2 ⎫ ⎪ ⎪ ⎧ xi (t ) ⎫ 1 * ⎪ 2ui ⎪ Ai ⎨ ⎨ ⎬= ⎬ ⎩ yi (t ) ⎭ 1.33 ⎪1 ⎪ ⎪0 ⎪ ⎩ ⎭ 3.25(1.33) ⎤ 3.8(1.33) ⎥ ⎦ -8.62 6.65 2.45 0 7⎤ 2⎥ ⎦ 4. Use the constant acceleration method. Δr = 1.697 - 0.693 = 1.004 m Δθ = 45 - (-30) = 75° Δz = 0.4 m Vrmax = 10 m min Ar max = 15 cm VΘ = 2 rev 10 m 60 sec m 2 = 0.15 = sec = 720° sec 2 sec sec AΘ max = 4 rev 2 = 1440° 2 sec sec = 0.1 m VΖ max = 6 m min sec AΖ max = 20 cm 2 = 0.2 m sec sec First calculate the time intervals for three splines of each axis without the consideration to coordinate them. r‐axis 10 = 1.111 sec 60 × 0.15 1.004 × 60 Δx − Δt1 = − 1.111 = 4.913 sec Δt2 = Vr 10 Δt1 = Δt3 = Δt1 = 1.111 sec θ − axis Δt1 = 2 = 0.5sec 4 Vx2 7202 = = 360 However Δx = 75 < Ax 1440 1 ⎛ 0.208 ⎞ 2 ∴ Δt1 = ⎜ ⎟ = 0.228 sec ⎝4⎠ Z‐axis 0.1 = 0.5sec 0.2 0.4 Δt2 = − 0.5 = 3.5sec 0.1 Δt3 = Δt1 = 0.5sec Δt1 = Without coordination, the velocity profiles would be like Modify the velocity profiles according to r‐axis Δt = Δt1 + Δt 2 + Δt 3 = 1.111 + 4.913 + 1.111 = 7.135 seconds For r‐axis, use max. velocity and accelerations For θ ‐axis Δt1 = Vθ = 1.111 Αθ Δt 2 = 75 Δθ − Δt1 = 4.913 ⇒ − 1.111 = 4.913 Vθ Vθ ∴ Vθ = 12.45° = 0.217 rad sec. s Αθ = 11.206° 2 sec For Z‐axis Δt1 = VΖ = 1.111 ΑΖ Δt 2 = 0.4 Δz − Δt1 = 4.913 ⇒ − 1.111 = 4.913 Vz Vz Vz = 0.664 m sec Α z = 0.0598 m 2 sec Boundary conditions r - axis θ − axis θ = −30° t0 r = 0.786 θ = −23.084 r = 0.167 θ = 12.45 r = 1.604 r − 0.167 tf t1 t2 r = 0.693 r=0 r = 1.697 r=0 θ =0 θ = 38.084 θ = 12.45 θ = 45° θ =0 z − axis z=0 z=0 z = 0.037 z = 0.0664 z = 0.363 z = 0.0664 z = 0.4 z=0 A1= 0.0000 0.0750 0 0.6928 ‐0.0000 0.0000 0.1667 0.6002 0.0000 ‐0.0750 .0705 ‐2.1227 0 0.0978 0 ‐0.5236 0.0000 0.0000 0.2172 ‐0.6443 0.0000 ‐0.978 1.3953 ‐4.1936 0 0.0299 0 ‐0.4000 0.0000 0.0000 0.0664 ‐0.4369 0.0000 ‐0.0299 0.4264 ‐1.5215 A2= A3= ...
View Full Document

This document was uploaded on 12/28/2011.

Ask a homework question - tutors are online