e310k - MAC 2313 Exam III Prof S Hudson Show all your work...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAC 2313 Nov 16, 2010 Exam III Prof. S. Hudson Show all your work and reasoning for maximum credit. Do not use a calculator, book, or any personal paper. You may ask about any ambiguous questions or for extra paper. Hand in any extra paper you use along with your exam. These are 10 points each, except the T-F is 20pts, total. 1) Find a unit vector in the direction in which f decreases most rapidly at P , and find the rate of change of f at P in that direction; f ( x,y ) = cos(3 x- y ); P ( π/ 6 ,π/ 4). 2) Express the integral as an equivalent integral with the order of integration reversed; R 2 R √ x f ( x,y ) dy dx . 3) Evaluate the iterated integral by converting to polar coordinates; R 1 R √ 1- x 2 ( x 2 + y 2 ) dy dx . 4) Find an equation for the tangent plane and parametric equations for the normal line to the surface z = 4 x 3 y 2 + 2 y at the point P (1 ,- 2 , 12). 5) True - False: Let T be the triangle with vertices at (0 , , ) (1 , 1) and (2 , 0). Which of the following are equivalent to...
View Full Document

{[ snackBarMessage ]}

Page1 / 3

e310k - MAC 2313 Exam III Prof S Hudson Show all your work...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online