M09E1 - MATH 102 MAKE-UP OF EXAM 1 TIME: 90 MINUTES...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 102 MAKE-UP OF EXAM 1 TIME: 90 MINUTES 02.04.2009 NAME: . . . . . . . . . . . . . . . . ..................................................................................................................................................................................................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................................................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................................................................................................................................. . . . . . . . . . . . 1. Find the limits: n2 + 2 = n!1 (n + 1)(2n2 + 5) (a) (5 pts) lim (b) (5 pts) lim cos n!1 3n2 + 2 2n2 + n + 1 = n5 + 3n = n!1 3n + n2 (c) (5 pts) lim 2. (10 pts) Find the sum of the geometric series 4 3 8 9 + 16 27 2 3. (10 pts) (a) Find the radius of convergence R of the power series 1 X n=1 1 xn : (n + 1)3n (b) (5 pts) If R is your answer to (a), does the series converge for x = R and x = R? 4. (10 pts) For the function f (x) = x 3x write the second degree Taylor polynomial about x = 1: 3 5. (10 pts) (a) Write the …rst 3 nonzero terms (including the constant one) of the Taylor series expansions about x = 0 of the functions f (x) = cos(2x) and g (x) = (1 + 4x2 ) 1=2 (b) (5 pts) Use your result in (a) to decide which function takes larger values for x close to 0. 6. (10 pts) Sketch the level curves (contour lines) of the function z = values 1; 4: Indicate clearly near each curve the corresponding value of z: x2 1+y 2 for the 4 2 7. (10 pts) Find the Taylor series of the function h(x) = (1 + 2x)ex about 0: Write the …rst four terms and the terms of degree 99 and 100. 8. (15 pts) Explain why the statement is true or give a counterexample if it is false. (a) The series (b) The series P1 n=1 1 X sin n 2 n=1 (c) The series an converges if an ! 0 as n ! 1: 1 X n=2 n converges. 1 converges. (Hint: Use the Integral Test.) n ln n (d) The cross– section of the graph of the function z = circle. p x2 + y 2 with yz – plane is a ( cos(x2 + 2xy ) (x; y ) 6= (0; 0) (e) The function f (x; y ) = 2 (x; y ) = (0; 0) is continuous at (0,0). ...
View Full Document

Ask a homework question - tutors are online