ee20-hw01-f09-sol

# ee20-hw01-f09-sol - EECS 20N: Structure and Interpretation...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EECS 20N: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Problem Set 1 SOLUTIONS HW 1.1 (a) z 1 = 1 + i 3 = 2 parenleftBig 1 2 + i 3 2 parenrightBig = 2 exp ( i 3 ) z 2 = exp ( i 2 3 ) = cos ( 2 3 ) + i sin ( 2 3 ) = 1 2 + i 3 2 See Fig. 1 2 1 1/2 z1 z1* 1/z1* 1/z1 z2 = 1/z2* z2* = 1/z2 Real Axis Imaginary Axis-1/2-1-2 Figure 1: Problem 1.1a (b) z 1 + 2 z 2 = 1 1 + i ( 3 + 3 ) = i 2 3 z 2 1 + z 2 = ( 2 exp ( i 3 )) 2 + exp ( i 2 3 ) = 4 exp ( i 2 3 ) + exp ( i 2 3 ) = 5 exp ( i 2 3 ) 1 2 z 1 + z * 2 = 1 2 ( 1 + i 3 ) + parenleftBig 1 2 + i 3 2 parenrightBig * = 1 2 + i 3 2 1 2 i 3 2 = 0 (c) | z 1 | = vextendsingle vextendsingle 2 exp ( i 3 )vextendsingle vextendsingle = 2 | z 2 | = vextendsingle vextendsingle exp ( i 2 3 )vextendsingle vextendsingle = 1 | z 1 z 2 | = | z 1 || z 2 | = 2 1 | z 1 z * 2 | = | z 1 || z * 2 | = | z 1 || z 2 | = 2 | z 1 /z 2 | = | z 1 | / | z 2 | = 2 | z 2 /z 1 | = | z 2 || z 1 | = 1 / 2 (d) (i) z 2 1 = ( 2 exp ( i 3 )) 2 = 4 exp ( i 2 3 ) (ii) z 3 1 = ( 2 exp ( i 3 )) 3 = 8 exp ( i 3 3 ) = 8 (iii) z 6 1 = ( 2 exp ( i 3 )) 6 = 64 exp ( i 6 3 ) = 64 exp ( i 2 ) = 64 (iv) z 4 2 = ( exp ( i 2 3 )) 4 = exp ( i 8 3 ) = exp ( i ( 2 + 2 3 )) = exp ( i 2 3 ) = z 2 (e) z 1 / 4 2 = exp ( i ( 2 n + 2 3 )) 1 / 4 n { , 1 , 2 , 3 } z 1 / 4 2 = exp ( i ( 2 3 )) 1 / 4 , exp ( i ( 2 + 2 3 )) 1 / 4 , exp ( i ( 4 + 2 3 )) 1 / 4 , exp ( i ( 6 + 2 3 )) 1 / 4 z 1 / 4 2 = exp ( i 6 ) , exp ( i ( / 2 + 6 )) , exp ( i ( + 6 )) , exp ( i ( 3 / 2 + 6 )) z 1 / 4 2 = exp ( i 6 ) , exp ( i ( 2 3 )) , exp ( i ( 7 6 )) , exp ( i ( 10 6 )) See Figure 2. The circles are the roots and the cross is z 2 . HW 1.2 (a) Using the given hint we write e i 2 = ( e i ) 2 , so cos (2 ) + i sin (2 ) = cos ( ) 2 sin ( ) 2 + i 2 cos ( ) sin ( ) The result follows by comparing the real and imaginary parts of this equality: cos (2 ) = cos ( ) 2 sin ( ) 2 and sin (2 ) = 2 cos ( ) sin ( ) . (b) Using the same procedure as in part (a) we obtain cos (3 )+ i sin (3 ) = ( cos ( ) 2 sin ( ) 2 + i 2 cos ( ) sin ( ) ) (cos ( ) + i sin ( )) and simplifying we obtain: cos (3 ) = cos ( ) 3 3 cos ( ) sin ( ) 2 and sin (3 ) = 3 cos ( ) 2 sin ( ) sin ( ) 3 ....
View Full Document

## ee20-hw01-f09-sol - EECS 20N: Structure and Interpretation...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online