This preview shows page 1. Sign up to view the full content.
Unformatted text preview: CIVL 232 Structural Concrete Design
Assignment 1 (Thursday, 12 February 2002)
1. (a) Describe two principal types of limit state in the limit state design.
(b) Why should we introduce the partial factors of safety for materials (γm) and for
loads (γf) in reinforced concrete design?
2. Fig. 1.2 shows a beam supported on foundations at A and B. The beam carries a
uniformly distributed dead load, including its selfweight, Gk = 25 kN/m, an imposed
load Qk = 7 kN/m and a 120 kN concentrated imposed load at C.
(a) Determine the weight of the foundation required at A in order to resist uplift.
(b) Carry out critical load arrangements for the ultimate limit state. Determine the
bending moments and shear forces of the beam, and draw the corresponding
bendingmoment and shear force envelopes.
120 kN imposed load
Gk = 25 kN/m , Qk = 7 kN/m A foundation B C
2m 4m Fig. 1.2
3. The threespan continuous beam shown in Fig. 1.3 has a constant crosssection and
supports a uniformly distributed dead load Gk = 20 kN/m and imposed load Qk = 15
kN/m. Carry out the loading arrangements for maximum span moments and for
design moments at the supports according to BS 8110. Compare the span and support
moments from the structural analysis and the method presented in BS 8110: Part 1:
clause 3.4.3 Table 3.5 (in p.24 of the course notes).
Gk = 20 kN/m , Qk = 15 kN/m
6m 5m Fig. 1.3 6m 4. In the braced frame shown in Fig. 1.4, the continuous girder ABCD has a constant
crosssection (Ig = const.) and supports a uniformly distributed dead load Gk = 20
kN/m and an imposed load Qk = 15 kN/m. Span AB = CD = 6 m and BC = 5 m.
Storey height of the frame = 3.8 m; all columns have the same crosssection (Ic =
const.), and Ic = 2Ig .
(a) Determine the maximum span moments for BC and column design moments at B
using the subframe methods (subframe types I & II) and the continuousbeam
simplification.
(b) Compare the results from the three different methods and make your comments on
these. Fig. 1.4
5. An unsymmetrical layout of shear walls in a building is shown in Fig. 1.5. Determine
the distribution of the 100 kN horizontal force F into each shear wall.
y
32 m B: 10k
D: 10k 15 m E: 10k A: 5k C: 5k
x
20 m 20 m F
Fig. 1.5 ...
View
Full
Document
This note was uploaded on 12/24/2011 for the course CIVL 232 taught by Professor Jskuang during the Spring '06 term at HKUST.
 Spring '06
 JSKUANG

Click to edit the document details