This preview shows page 1. Sign up to view the full content.
Unformatted text preview: values are distributed. To avoid confusion, lets say were dealing with the population SD of a population data set. PART F: CHEBYSHEVS THEOREM Chebyshevs Theorem Let k be a real number such that k > 1 . What fraction of the values in a data set must lie within k SDs of the mean? The answer is: at least 1 1 k 2 . Pro: This theorem applies to any distribution shape and is thus distribution free. Con: 1 1 k 2 might not be close to our desired fraction; it only provides a lower bound on what the desired fraction could be....
View
Full
Document
This note was uploaded on 12/29/2011 for the course MATH 119 taught by Professor Kim during the Fall '09 term at SUNY Stony Brook.
 Fall '09
 KIM

Click to edit the document details