HW 5 Ch03.5 and 4

HW 5 Ch03.5 and 4 - Phys 404 Spring 2010 Homework 5,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Phys 404 Spring 2010 Homework 5, CHAPTER 5 Due Thursday, March 25, 2010 @ 12:30 PM General hint : Problems 1 – 3 involve classical statistical mechanics. In this case, the sums over quantum states are replaced by integrals over all position and momentum components, so that, for example, ( ) ( ) -H(p,q) NN Nd 1 ... X(p,q)e dp dq h X= Z   τ  ∫∫  ( ) ( ) -H(p,q) Nd 1 Z = ... e dp dq h τ Here N is the number of particles, d is the spatial dimensionality of the problem, H( p , q ) is the Hamiltonian (total energy) in terms of the vector coordinates ( q ) and momenta ( p ) of all the particles, and h is Planck’s constant. Note that there is one integral for each component of momentum and position for each particle, so that there are 2Nd integral signs indicated by the ... in the formulas. See the Lecture 13 summary for a review of classical statistical mechanics. 1 . A pendulum hangs under gravity, has length L and mass m , and makes an angle θ with the vertical direction. Assuming that the amplitude of oscillation is small, find < >, < 2
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/29/2011 for the course PHYSICS 404 taught by Professor Anlage during the Fall '11 term at Maryland.

Ask a homework question - tutors are online