lec_ch11 - Chapter 11 Hurricanes Tropical weather Anatomy...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 11: Hurricanes Tropical weather Anatomy of a hurricane Hurricane formation and dissipation Some notable hurricanes Hurricane watches, warnings and forecasts Modifying hurricanes Tropical Weather 23.5N23.5S streamlines tropical wave easterly wave, Tropics: 2500km wavelength, 1020 knots speed The tropics are close to the equator, where the Coriolis force is too small to balance the pressure gradient force. Thus winds are not geostrophic. Anatomy of a Hurricane hurricane (typhoon, cyclone): > 64 knots eye; eyewall spiral rainband Hurricanes are quite similar to, yet also quite different from mid-latitude storms. Sinking air and clear sky in the eye due to high pressure aloft Fig. 11-3, p. 302 Hurricane Formation and Dissipation Hurricane forms over tropical waters where winds are light, humidity is high in a deep layer, and surface temperature is warm, typically 26.5C (80F) or greater, over a vast area SST > 28C Over Atlantic The Right Environment Convergence trigger ITCZ, easterly waves, midlatitude fronts to tropics Weak trade wind inversion Weak upper wind during El Nino over Atlantic Some Coriolis force: 520deg latitude The Developing Storm Heat engine: heat taken at high T, converted into work, then ejected at low T. Hurricane: heat taken from warm ocean, converted into kinetic energy (wind), lost at its top through radiational cooling Maximum wind depends on surface and tropopause temperature difference and the potential of sea surface evaporation The Storm Dies Out cutting off the storm's energy supply by moving over cooler ocean Landfall: lose energy sourse and increased friction to reduce wind Hurricane Stages of Development tropical disturbance: unorganized mass of thunderstorms, weak wind tropical depression: 2034 knots, closed isobars tropical storm: 3564 knots, with a name hurricane: > 64 knots, with a name This progression of stages is followed in reverse order as a storm weakens. Hurricane vs midlattitude storms Hurricane: 1) derive energy from warm ocean and latent heat of condensation; 2) warm core low; 3) high center aloft; 4) sinking air in the eye; 5) strongest wind near surface; 6) stronger wind; 7) smaller size Midlatitude storms: 1) derive energy from horizontal temperature difference; 2) cold core low; 3) intensifies with height; 4) rising air at center; 5) strongest wind aloft in the jet stream; 6) wind not as strong; 7) larger size Both are low pressure systems with counterclockwise motions Hurricane Movement role of the ITCZ northward movement due to subtropical highs influence of the westerlies Because of the Bermuda High, westward-moving North Atlantic hurricanes often take a turn towards the north as they approach North America. Lack of hurricanes adjacent to South America: cooler water vertical wind shear, unfavorable ITCZ position Fig. 11-10, p. 307 Naming Hurricanes and Tropical Storms past practices: female names current protocol: female and male names; in alphabetic Letters Q, U, X, Y not used over north Atlantic Letters Q, U not used over north Pacific Whenever a hurricane has had a major impact, any country affected by the storm can request that the name of the hurricane be retired by the World Meteorological Organization. order so that the first hurricane starts with the letter A; then in Greek alphabet meter rise of sea level location of strongest winds Ekman transport 1015 m high waves High ocean due to low pressure storm surge: several Flooding: due to heavy Devastating Winds and the Storm Surge rain and storm surge; cause most human casualties Table 11-2, p. 313 Table 11-3, p. 316 Katrina, 2005: $75B damage; >1200 deaths; High winds, large waves, and large storm surge caused disastrous breeches in the levee system Figure 4, p. Hurricane watch: 2448 hr before landing hurricane warning: storm will strike an area Forecasts: improvement in path; Hurricane Watches, Warnings and Forecasts not in strength also cause Economic loss Wrong forecasts Modifying Hurricanes cloud seeding to reduce maximum wind monomolecular films ...
View Full Document

This note was uploaded on 04/06/2008 for the course NATS - 101 taught by Professor Zeng during the Fall '07 term at Arizona.

Ask a homework question - tutors are online