DSP(3e)Errata

# DSP(3e)Errata - Digital Signal Processing A Computer-Based...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Digital Signal Processing: A Computer-Based Approach 3rd Edition by Sanjit K. Mitra Errata List Chapter 1 1. Page 4, Eq. (1.1): Replace the lower limit of the integral with “ − ∞ ”. Chapter 2 1. Page 45, line 2 below Eq. (2.9): Insert “for a length-N sequence,” after “definition that” . Delete “the L 2 −norm ”, and replace “ x 2 ” with “ x 2 / N ”. Delete “the L 1 −norm ”. 2. Page 45, line 3 below Eq. (2.9): Replace “ x 1 ” with “ x 1 / N ”. 3. Page 49, Example 2.3, line 4: Replace “Example 2.1” with “Example 2.2”. 4. Page 61, Example 2.9, first line: Replace “0.5” with “0.05”. 5. Page 67, Figure 2.23: Replace “Discrete-time sequence” with “Discrete-time system”. 6. Page 73, last line: Replace “Figure 2.28(a)” with “Figure 2.6(a)”. 1 7. Page 78, line 6 from top: Replace “ { , 0.5, 1}” with “ {0.5, 1, 0.5} ”. 8. Page 109, Problem 2.20: Replace “Eq. (2.22)” with “Eq. (2.29)”. 9. Page 109, Problem 2.29: Replace “ {1 − 1 − 1 1 1 − 1 − 1 1} ” with “ {1 − 1 − 1 1} ”, “ {0 − 3 0 30−30 3} ” with “ {0 − 3 0 3} ”, and “ {2 0 − 2 0 2 0 − 2 0} ” with “ {2 0 − 2 0} ”, respectively. 10. Page 110, Problem 2.42: Replace “2.63” with “2.66”. 11. Page 114, Problem 2.79: Replace “Eq. (2.80)” with “Eq. (2.90)”. 1 12. Page 115, Problem M2.1, Parts (a) and (b): Replace “Program 2_1” with “Program 2_2.” Chapter 3 1. Page 120, line 6 from bottom: Replace “he” with “the”. 2. Page 126, Eq. (3.26): Replace “ (cosωn + sinωn) ” with “ (cosωn − sinωn) ”, replace “ ( x re [n]cosωn − xim [n]sinωn) + j ” with “ ( x re [n]cosωn + xim [n]sinωn) ”, and ∞ replace “ ∑ ( xim [n]cosωn + x re [n]sinωn) ” with n = -∞ ∞ “ + j ∑ ( xim [n]cosωn − x re [n]sinωn) ”. n = -∞ 3. Page 126, Eq. (3.29a): Replace “ ( x re [n]cosωn − xim [n]sinωn) ” with “ ( x re [n]cosωn + xim [n]sinωn) ”. 4. Page 126, Eq. (3.29b): Replace “ ( xim [n]cosωn + x re [n]sinωn) ” with “ ( xim [n]cosωn − x re [n]sinωn) ”. 5. Page 128, line 4 above Eq. (3.36): Replace “ X * (e jω ) ” with “ X * (e − jω ) ”. 6. Page 132, Line below Eq. (3.44): Replace “case, X K (e jω ) ” with “case, X (e jω ) ”. 7. Page 134, Figure 3.6 caption: Replace “(3.51)” with “(3.50)”. 8. Page 137, line 2 from bottom: Replace “Example 3.5” with “Example 3.6”. 9. Page 143, line 10 from top: Replace “ X (ejω) ” with “ X (e jω ) ”. 10. Page 145, Eq. (3.75): Replace “ | X (e jω ) | ” with “ ln | X (e jω ) | ”. 11. Page 151, line 14 from bottom: Replace “with” with “from”. 12. Page 161, Problem 3.5: Replace “ sin(2πt ) ” with “ sin(t ) ”. ⎛Ω⎞ ⎛ Ω⎞ 13. Page 161, Problem 3.6(d): Replace “ X a ⎜ ⎟ ” with “ X a ⎜ j ⎟ ”. ⎝a⎠ ⎝ a⎠ 14. Page 162, Problem 3.16: Replace “ 1.. ” with “ 1. ”. 2 15. Page 163, Problem 3.21(d): Replace “ jα e j ω (1 − α e jω ) 2 ” with “ − α e − jω (1 − α e − jω ) 2 ”. 16. Page 164, Problem 3.37: Replace “ − 3 ≤ n ≤ 7 ” with “ − 3 ≤ n ≤ 6 ”. 17. Page 166, Problem 3.46: Delete “of each” and replace “systems” with “system”. 18. Page 166, Problem 3.48: Replace “systems” with “system”. 19. Page 166, Problem 3.49(a): Replace “with a frequency” with “and a frequency”. 20. Page 167, Problem 3.56: Replace “ δ[ n] + a δ[ n − 1] + b δ[ n − 2] ” with “ a δ[ n] + b δ[ n − 1] + δ[ n − 2] ”. 21. Page 167, Problem 3.61(d): Replace “ H b (e jω ) ” with “ H d (e jω ) ”. 22. Page 168, Problem 3.74(a): Replace “ 0 ≤ n ≤ 3 ” with “ 0 ≤ n ≤ 4 ”. Chapter 4 1. Page 180, Figure 4.8 caption: Replace “kHz” with “Hz”. 2. Page 180, Figure 4.9 caption: Replace “kHz” with “Hz”. 3. Page 186, Lines 5-6 from bottom: Replace “the extended bandwidth Ω H − Ω o is an integer multiple of Ω H ” with “ Ω H is an integer multiple of the extended bandwidth Ω H − Ω o ”. 4. Page 219, Line 2 below Eq. (4.77): Replace “ 2 R L ” with “ R L ”. 5. Page 230, Problem 4.29: Replace “ 1 ” in the numerator of H HP (s ) with “ s 3 ”. Chapter 5 1. Page 244, Line 2 from bottom: Replace “ 0,1,K, N , ” with “ 0,1,K, N − 1, ”. 2. Page 246, Line 2 below Eq. (5.52): Replace “circshift” with “circshift1”. 3. Page 258, Table 5.1: Replace “ jX im ” with “ jX im [ n] ”. 4. Page 261, Figure 5.11: The rightmost block should be labeled “N-point IDFT”. 3 5. Page 263, line 2 from bottom: Replace “ 5.30 ” with “ 5.31 ”. − kn o 6. Page 264, line 6 from top: Replace “ WN −k o 7. Page 264, line 7 from top: Replace “ WN kn G[ k ] ” with “ WN o G[ k ] ”. −k o n g[ n] ” with “ WN g[ n] ”. 8. Page 266, Eq. (5.122): Replace “ {H[ k ]} = {6 1 − j 0 1 + j} ” with “ {H[ k ]} = {6 1 − j 0 − 1 + j} ”. 9. Page 269, Figure 5.14(b): Replace “ × 1016 ” with “ × 10 −16 ”. 10. Page 274, Line 3 from bottom: Replace “ X[( N − 2) / 2] ” with “ X[ N / 2] ”. 11. Page 288, Figure 5.23: Interchange “DFT” and “Haar” inside the figure. N n 12. Page 290, Problem 5.12: Replace “ x1[ n] = ⎛ x[ n] + x[ + n] ⎞ WN ” with ⎟ ⎜ 2 ⎠ ⎝ N n “ x1[ n] = ⎛ x[ n] − x[ + n] ⎞ WN ”. ⎟ ⎜ 2 ⎠ ⎝ 0, 0 ≤ n ≤ N − 1, 13. Page 291, Problem 5.15: Replace “ h[ n] = ⎧ ⎨ x[ n], N ≤ n ≤ 2 N − 1. ” with ⎩ 0, 0 ≤ n ≤ N − 1, “ h[ n] = ⎧ ⎨ x[ n − N ], N ≤ n ≤ 2 N − 1. ”. ⎩ 14. Page 291, Problem 5.16: Replace “and H[ k ] ” with “ H[ k ], and X[ k ] ”. 15. Page 293, Problem 5.34, Part (b): Replace “ X[6] ” with “ X[5] ”. 16. Page 293, Problem 5.35: Replace “first 6 ” with “first 7 ”, “ 15 ” with “ 2 + j ”, and “ 2 + j ” with “ 15 ”. 17. Page 293, Problem 5.38: Replace “ X [7] ” with “ X[8] ”. 18. Page 293, Problem 5.41: Replace “ X[ k 4 ] = −3.4 + j 5.9 ” with “ X[ k 4 ] = −3.4 − j 5.9 ”. 19. Page 294, Problem 5.43: Replace “ − 2 4 ” with “ − 2, 4 ”. 20. Page 294, Problem 5.44: Replace “ , , ” with “ , ” and “ e j 2 π / 3 ” with “ e j 2 πn / 3 ”. 21. Page 294, Problem 5.49: Replace “ even ” with “ real ” and replace “ odd ” with “ imaginary ”. 4 22. Page 295, Problem 5.51: Replace “ M = N = 3 ” with “ M = N = 4 ”. 23. Page 295, Problem 5.54, Part (b): Replace “ π / 5 ” with “ π / 4 ”. 24. Page 295, Problem 5.58, Part (b): Replace “ 15 ” with “ 21 ”. 25. Page 297, Problem 5.62: Replace “ [17 − 17 − 17 17] ” in the third row of the matrix H N with “ [13 − 13 − 13 13] ” and the fourth row “ [7 − 7 7 − 7]” with “ [7 − 17 17 − 7] ”, and replace “ [1 − 1 − 1 17]” in the third row of matrix G N with “ [1 − 1 − 1 1] ”. Chapter 6 ∞ ∞ n=0 m =0 1. Page 304, Line 4 from top: Replace “ ∑ α − m z m ” with “ ∑ α − m z m ”. 2. Page 304, Line above Eq. (6.12): Replace “ z − M ” with “ α M z − M ”. 3. Page 304, Eq. (6.12): Replace “ z − M N − M −(N − M ) ⎛1− α z replace “ z − M ⎜ ⎜ 1 − α z −1 ⎝ “ z − M − α N − M z − N ” with “ α M z − M N − M −1 ∑ n=0 (αz −1 ) n ” with “ α M z − M N − M −1 ∑ n=0 N − M −(N − M ) ⎞ ⎞ ⎛ z ⎟ ” with “ α M z − M ⎜ 1 − α ⎟ ⎜ 1 − αz −1 ⎠ ⎝ − α N z − N ”. (αz −1 ) n ”, ⎟ ” and replace ⎟ ⎠ 4. Page 310, Line 11 from bottom: Replace “factor” with “factorize”. 5. Page 322, Line 2 from bottom: Replace “ 2(0.2) n μ[n] ” with “ 5(0.2) n μ[n] ”. ⎛ ⎞ ⎛ ⎞ 1 1 ⎟ ” and ⎟ ” with “ 5⎜ 6. Page 323, Line 6 from top: Replace “ 2⎜ ⎜ ⎜ −1 ⎟ −1 ⎟ ⎝ 1 − 0 .2 z ⎠ ⎝ 1 − 0.2 z ⎠ replace “ 6 + 0.2 z −1 ” with “ 9 + 1.7 z −1 ”. 7. Page 323, Eq. (6.56): Replace “ 6 + 0.2 z −1 ” with “ 9 + 1.7 z −1 ”. 8. Page 344, Eq. (6.108): Replace “ 0.3z + −0.18 ” with “ 0.3z − 0.18 ”. 9. Page 344, Problem 6.12: Replace “length-12” with “length-10”. 5 10. Page 345, Problem 6.23: Replace it with the following: “Determine the z –transform of each of the following left-sided sequences: (a) x[ n] = α n μ[ −n − 1], (b) y[ n] = (n + 1)α n μ[ −n − 1]. ” 3. Page 349, Problem 6.44: Replace “ “ 1 − z −2 1 − (1 + α) cos(ωc )z −1 + αz − 2 1 − αz −2 1 − 2α cos(ωc )z −1 2 −2 +α z ” with , ” and replace “ 1 /(1 − α) ” with “ 2 /(1 − α) ”. 4. Page 350, Problem 6.52: Replace it with the following: “Let H ( z) be the transfer function of a causal, stable LTI discrete-time system. Consider the transfer function G( z ) = H ( z ) z = F ( z ) . What are the conditions that need to be satisfied by the transformation F ( z) so that remains stable?” 5. Page 350, Problem 6.53: Replace it with the following: “Determine the z –transform F ( z ) of the Fibonacci sequence { f [ n]} of Problem 2.70. Evaluate the inverse z – transform of F ( z ) . H ( z ) + H ( z −1 ) 6. Page 351, Problem 6.58: Replace “ τ g (ω) = 2 T ( z ) + T ( z −1 ) “ τ g (ω) = 2 T ( z) = z . ” with z = e jω , ” and add at the bottom of the equation “where z = e jω dH ( z) / dz . ”. H (z) Chapter 7 1. Page 367, line 3 from top: Replace the second “ H 1 ( z ) ” with “ H 2 ( z ) ”. ( ( 2. Page 369, line below Eq. (7.41): Replace “Since H (−ω) = H (ω), " with “From the above”. 3. Page 369, line below Eq. (7.43): Insert “and making use of the relation ( ( H (−ω) = H (ω)" after “(7.43)”. 4. Page 418, Problem 7.49: Replace it with “If H ( z) is a bandpass filter with passband edges at ω p1 and ω p2 , and stopband edges at ω s1 and ω s 2 , with ω s1 < ω p1 < ω p 2 < ωs 2 , what type of filter is H (− z) ? Determine the locations of the bandedges of H (− z) in terms of the bandedges of H ( z). ” 6 5. Page 418, Problem 7.53: Replace “ − j 0.3 ” with “ − j ”. 6. Page 421, Problem 7.79: Replace “ 0.5 − 0.4 z −1 + 0.8 z −2 + 0.8 z −3 − 0.4 z −4 + 0.5z −5 ” with “ − 0.1 + 0.5z −1 + 0.05z −2 + 0.05z −3 + 0.5z −4 − 0.1z −5 ”. 7. Page 423, Problem 7.89, Part (b): Replace “ 0.2(1 − z −2 ) ” with “ 0.1(1 − z −2 ) ”. 8. Page 423, Problem 7.90, Part (b): Replace “ 4.5 + 6 z −1 + 6 z −2 + 4.5z −3 ” with “ 3 + 7.5z −1 + 7.5z −2 + 3z −3 ”. 9. Page 425, Problem M7.5: Replace “ 1 − 0.2742 z −2 + z −3 ” with “ 1 − 0.2742 z −1 + z −2 ”. 10. Page 425, Problem M7.7: Replace “ (7.64) ” with “ (7.71) ”. 11. Page 425, Problem M7.8: Replace “ (7.67) ” with “ (7.74) ”. Chapter 8 1. Page 483, Problem 8.35: Replace “realizes” with “is” and replace “transfer” with “filter”. 2. Page 484, Problem 8.37: Replace “multipliers” with “delays”. 3. Page 484, Problem 8.39: Replace “3H” with “3B”, and “multipliers” with “delays”. 4. Page 485, Problem 8.48, Part (c): Replace “ 0.3885 ” with “ 0.5414 ”, and “ 0.2543 ” with “ 0.0757 ”. 5. Page 485, Problem 8.48, Part (d): Replace “ 0.3646 ” with “ 0.4547 ”, and “ 0.147 ” with “ − 0.2859 ”. 6. Page 488, Problem M8.7: Replace “ G( z) = “ G( z) = 0.3288(1 + 0.8917 z −1 + 1.6721z −2 + 1.6721z −3 + 0.8917 z −4 + z −5 ) 1 − 0.2086 z −1 + 0.9966 z − 2 + 0.1916 z − 3 + 0.2604 z − 4 + 0.1035 z − 5 ” with 0.2801(1 − 0.6006 z −1 + 1.0338 z −2 + 1.0338 z −3 − 0.60067 z −4 + z −5 ) 1 − 1.9607 z −1 + 2.9395 z − 2 − 2.14486 z − 3 + 1.165 z − 4 − 0.1962 z − 5 ”. 7 7. Page 488, Problem M8.8: Replace “ G( z) = “ G( z) = 0.2879(1 + 0.1318 z −1 + 1.1861z −2 − 1.1861z −3 − 0.1318 z −4 − z −5 1 + 1.5734 z −1 + 2.704 z − 2 + 1.9461z − 2 + 1.3007 z − 3 + 0.3025 z − 5 0.2876(1 + 0.1318 z −1 + 1.1861z −2 − 1.1861z −3 − 0.1318 z −4 − z −5 1 + 1.57274 z −1 + 2.712 z − 2 + 1.9431z − 2 + 1.2979 z − 3 + 0.3018 z − 5 ” with ”. Chapter 9 1. Page 497, Eq. (9.23): Delete “T” in the numerator and denominator on the right hand side of the equation. 2. Page 498, Eqs. (9.30a): Delete “T” in the numerator and denominator on the right hand side of the equation. 3. Page 498, Eq. (9.30b): Delete “T” on the right hand side of the equation. z z 4. Page 506, Eq. (9.40): Replace “ F −1 ( ˆ ) ” with “ 1 / F ( ˆ ) ”. 5. Page 517, Problem 9.8: Replace it with “Using Eq. (9.58), develop the expression for the causal digital transfer function G( z) obtained from the causal analog transfer function H (s) = A s+α via the impulse invariance method. 6. Page 520, Eq. (9.60): Replace it with “ G LP ( z ) = 0.1944(1 + 0.9802 z −1 + z −2 ) 1 − 0.7016 z −1 + 0.281 z − 2 . ”. Chapter 10 ⎛ 2 πn ⎞ ⎛ πn ⎞ 1. Page 533, Eq. (10.30): Replace “ cos⎜ ⎟ ” with “ cos⎜ ⎟ ”. ⎝ 2M + 1 ⎠ ⎝M⎠ ⎛ 2 πn ⎞ ⎛ πn ⎞ 2. Page 533, Eq. (10.31): Replace “ cos⎜ ⎟ ” with “ cos⎜ ⎟ ”. ⎝ 2M + 1 ⎠ ⎝M⎠ ⎛ 2πn ⎞ ⎛ πn ⎞ 3. Page 533, Eq. (10.30): Replace “ cos⎜ ⎟] ” with “ cos⎜ ⎟ ”, and replace ⎝ 2M + 1 ⎠ ⎝M⎠ ⎛ 4πn ⎞ ⎛ 2πn ⎞ “ cos⎜ ⎟ ” with “ cos⎜ ⎟ ”. ⎝ 2M + 1 ⎠ ⎝M⎠ 4. Page 535, Table 10.2: Replace “Barlett” with “Bartlett”. 5. Page 550, Line 2 below Eq. (10.84): Replace “ ω ” with “ π ”. 6. Page 550, Line 2 above Eq. (10.86): Replace “and” with “with”. 8 7. Page 550, Eq. (10.87a): Replace it with “ δ (pF ) = 1 + δp − 1 ”. 1 + δs 8. Page 562, Example 10.22: In line 15 of the M-file minphase.m in the CD, replace “h” with “g”. ( ( 9. Page 569, Figure 10.35: Replace “ H (ω) ” with “ H IFIR (ω) ”. 10. Page 569, Line 4 from bottom: Replace “ H ( z ) ” with “ H IFIR ( z ) ”. Chapter 11 1. Page 596, Eq. (11.9): Replace the second row of T with “ − 1 1 δ 0 0 0 ”. 2. Page 622, Line 2 below Eq. (11.63): Replace “ x[[ n1 + N1n2 ] ” with “ x[ n1 + N1n2 ] ”. 3. Page 622, Eq. (11.64): Replace “ X [ k1 + N1k 2 ] ” with “ X [ N 2 k1 + k 2 ] ”. Chapter 12 1. Page 734, Figure P12.8: Replace “0.7” with “0.12”. Chapter 13 1. Page 767, Line 12 from bottom: Replace “Type II” with “Type I”. 2. Page 768, Figure 13.33: Replace “ R0 ( z ) ”, “ R1 ( z ) ”, “ Rk ( z ) ”, and “ R L −1 ( z ) ” with “ E0 ( z ) ”, “ E1 ( z ) ”, “ E k ( z ) ”, and “ E L −1 ( z ) ”, respectively. 3. Page 768, Figure 13.34: Replace “ Rk ( z ) ” with “ E k ( z ) ”. 4. Page 768, Figures 13.35(a) and (b): Replace “ R0 ( z ) ”, “ R1 ( z ) ”, “ Rk ( z ) ”, and “ R L −1 ( z ) ” with “ E0 ( z ) ”, “ E1 ( z ) ”, “ E k ( z ) ”, and “ E L −1 ( z ) ”, respectively. Replace “ z − k ” with “ z −μ ” and interchange the up-samplers and down-samplers. 5. Page 769, Figure 13.37 (a): Replace “ R0 ( z ) ” and “ R1 ( z ) ” with “ E0 ( z ) ” and “ E1 ( z ) ”, respectively. 6. Page 793, Problem 13.25: Replace “y[n]” with “u[n]”. Chapter 14 1. Page 833: 9 % Program 14_1 % Frequency Responses of Tree-Structured QMF Filters % clf; % Type in prototype lowpass filter coefficients % B1 = input ('Filter coefficients = '); B1 = [0.002329266,-0.005182978,-0.002273145,0.01354012,-0.0006504669,… -0.02755195,0.01004621,0.05088162,-0.03464143,… -0.09987885,0.12464520,0.4686479]; % Test coefficients B1 = [B1 fliplr(B1)]; % Generate the complementary highpass filter L = length(B1); for k = 1:L B2(k) = ((-1)^k)*B1(k); end % Determine the coefficients of the four filters B10 = zeros(1, 2*length(B1)); B10([1: 2: length(B10)]) = B1; B11 = zeros(1, 2*length(B2)); B11([1: 2: length(B11)]) = B2; C0 = conv(B1, B10);C1 = conv(B1, B11); C2 = conv(B2, B10);C3 = conv(B2, B11); % Determine the frequency responses [H00z, w] = freqz(C0, 1, 256);% corrected h00 = abs(H00z); M00 = 20*log10(h00); [H01z, w] = freqz(C1, 1, 256); h01 = abs(H01z); M01 = 20*log10(h01); [H10z, w] = freqz(C2, 1, 256); h10 = abs(H10z); M10 = 20*log10(h10); [H11z, w] = freqz(C3, 1, 256); h11 = abs(H11z); M11 = 20*log10(h11); plot(w/pi, M00,'-',w/pi, M01,'--',w/pi, M10,'--',w/pi,M11,'-');%corrected xlabel('\omega/\pi'); ylabel('Gain, dB');grid axis([0,1,-150,10]) 2. Page 846, Figure P14.2: Replace “ F1 (e jω ) ” with “ G1 (e jω ) ”. 3. Page 847, Problem 14.11: Insert “elliptic” after “lowpass”. 4. Page 847, Problem 14.17: Replace “ 3 z −2 ” with “ 4 z −2 ”, “ 2 ” with “ z −1 ”, “ 1.5 z −1 ” with “ 0.5 z −1 ”, and “ 4 z −1 ” with “ z −2 ”. 10 5. Page 848, Problem 14.26: Replace it with the following: “The lowpass analysis filter of a two-channel QMF bank is given by H ( z ) = a + bz −1 + cz −2 + dz −3 + ez −4 + fz −5 . Determine the highpass analysis filter H 1 ( z ) , and the two synthesis filters, G0 ( z ) and G1 ( z ), so that the QMF bank is an orthogonal filter bank. 6. Page 848, Problem 14.31, Part (c): Replace “ Pm ( z ) ” with “ Pm ( z −1 ) ”. Chapter 15 1. Page 887, Eq. (15.72): Replace “ ω ” with “ ωc ”. 2. Page 889, Line below Eq. (15.76): Replace “is” with “determines” and insert “ ωo ” after “frequency”. 3. Page 892, Eq. (15.82): Replace “ y[n − R1 ] ” with “ y[n − R − 1] ”. 4. Page 909, Line 5 from top: Replace “ 2 x[n − 2] ” with “ 4 x[n − 2] ”. 5. Page 909, Line 8 from top: Replace “ d = 2 ” with “ d = 4 ”. 6. Page 911, line above Eq. (15.119): Replace “Figure 11.56(b)” with “Figure 15.51(b)” and “Figure 11.57” with “Figure 15.52”. 7. Page 915, Figure 15.59: The down-sampling factor of the down-sampler should be M. 8. Page 922, Program 15_13.m % Program 15_13 % Sigma-Delta D/A Converter Operation % %clf; % Generate the input sinusoidal sequence N = input('Type in length of the input sequence = '); A = input('Type in amplitude of the input = ');; w0 = 2*pi*0.02; n = 1:N; m = n-1; x = A*cos(w0*m); axis([0 N -1 1]); stem(m,x); xlabel('Time index'); ylabel('Amplitude'); title ('Input digital signal'); pause % Generation of quantized output 11 x = (x)/(A); y = zeros(1,N+1); a = zeros(1,N+1); e = 0; for k = 2:N+1 a(k) = x(k-1) - e; if a(k) >= 0, y(k) = 1; else y(k) = -1; end e = y(k) - a(k); end yn = y(2:N+1); axis([0 N -1.2 1.2]); stem(m, yn); % Plot the quantized output xlabel('Time'); ylabel('Amplitude'); title ('Digital output of sigma-delta quantizer'); pause Y = fft(yn); H = [1 1 0.5 zeros(1,N-5) 0.5 1];% Lowpass filter YF = Y.*H; % Filtering in the DFT domain out = ifft(YF); plot(m,out); xlabel('Time'); ylabel('Amplitude'); title ('Lowpass filtered analog output'); Appendix A 1. Page 934, line 4 above Eq. (A.31a): Delete “[?]”. 2. Page 935, Line above Eq. (A.33): Replace “Eq. (A.16)” with “Eq. (A.20b)”. 3. Page 935, Line above Eq. (A.34): Replace “Eq. (A.17)” with “Eq. (A.20c)”. Tuesday, September 30, 2008 12 ...
View Full Document

## This note was uploaded on 12/28/2011 for the course ECE 158 taught by Professor Staff during the Fall '08 term at UCSB.

Ask a homework question - tutors are online