{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

e178-L7

# e178-L7 - Averaging g x y = f x y x y 1M g x y = gi x y M i...

This preview shows pages 1–6. Sign up to view the full content.

Local Enhancement 1 Averaging Fig 3.30 and Uncorrelated zero mean duces the noise variance 2 2 2 g x y f x y x y g x y M g x y E g x y f x y M x y x y x y i i M g ( , ) ( , ) ( , ) ( , ) ( , ) ( ( , )) ( , ) ( , ) ( , ) ( , ) Re = + = = = = η σ σ η σ η η 1 1 1 Spatial Filtering Chapter 3 Required Reading: All sections except 3.8 Local Enhancement 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Image Forensics Project Guidelines Process Images Local Enhancement 3 Local Enhancement 4 Fig 3.30
Local Enhancement 5 Another example Images with additive Gausian Noise; Independent Samples. I=imnoise(J,’Gaussian’); Local Enhancement 6 Averaged image Left: averaged image (10 samples); Right: original image

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Local Enhancement 7 Spatial filtering Frequency Spatial 0 LPF HPF BPF Local Enhancement 8 Smoothing (Low Pass) Filtering ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ω 7 ω 8 ω 9 f 1 f 2 f 3 (x,y) Replace f (x,y) with Linear filter LPF: reduces additive noise blurs the image sharpness details are lost (Example: Local averaging) Fig 3.35 f x y f i i i ^ ( , ) = ω
Local Enhancement 9 Fig 3.35: smoothing Local Enhancement 10 Fig 3.36: another example

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}