08 ProjGeom

08 ProjGeom - Spring 2006 Projective Geometry 2D Projective...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Spring 2006 Projective Geometry 2D Projective Transformations Acknowledgements Marc Pollefeys: for allowing the use of his excellent slides on this topic http://www.cs.unc.edu/~marc/mvg/ Richard Hartley and Andrew Zisserman, " Multiple View Geometry in Computer Vision " Friday, February 5, 2010 ..to map one 3D plane to another 3D plane Homography Friday, February 5, 2010 x 1 x 2 x 3 = h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 x 1 x 2 x 3 Projective Geometry 2D 3 Projective transformations A projectivity is an invertible mapping h from P 2 to itself such that three points x 1 ,x 2 ,x 3 lie on the same line if and only if h (x 1 ), h (x 2 ), h (x 3 ) do. Definition: Friday, February 5, 2010 x 1 x 2 x 3 = h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 x 1 x 2 x 3 Projective Geometry 2D 3 Projective transformations A projectivity is an invertible mapping h from P 2 to itself such that three points x 1 ,x 2 ,x 3 lie on the same line if and only if h (x 1 ), h (x 2 ), h (x 3 ) do. Definition: A mapping h : P 2 P 2 is a projectivity if and only if there exist a non-singular 3x3 matrix H such that for any point in P 2 represented by a vector x it is true that h (x)= H x Theorem: Friday, February 5, 2010 x 1 x 2 x 3 = h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 x 1 x 2 x 3 Projective Geometry 2D 3 Projective transformations A projectivity is an invertible mapping h from P 2 to itself such that three points x 1 ,x 2 ,x 3 lie on the same line if and only if h (x 1 ), h (x 2 ), h (x 3 ) do. Definition: A mapping h : P 2 P 2 is a projectivity if and only if there exist a non-singular 3x3 matrix H such that for any point in P 2 represented by a vector x it is true that h (x)= H x Theorem: Definition: Projective transformation or 8DOF Friday, February 5, 2010 x...
View Full Document

This note was uploaded on 12/29/2011 for the course ECE 181b taught by Professor Staff during the Fall '08 term at UCSB.

Page1 / 23

08 ProjGeom - Spring 2006 Projective Geometry 2D Projective...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online