ch4 - Chapter 4 The Configuration Space Steven M. LaValle...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 4 The Configuration Space Steven M. LaValle University of Illinois Copyright Steven M. LaValle 2006 Available for downloading at http://planning.cs.uiuc.edu/ Published by Cambridge University Press Chapter 4 The Configuration Space Chapter 3 only covered how to model and transform a collection of bodies; how- ever, for the purposes of planning it is important to define the state space. The state space for motion planning is a set of possible transformations that could be applied to the robot. This will be referred to as the configuration space , based on Lagrangian mechanics and the seminal work of Lozano-P erez [24, 26, 25], who extensively utilized this notion in the context of planning (the idea was also used in early collision avoidance work by Udupa [35]). The motion planning literature was further unified around this concept by Latombes book [23]. Once the config- uration space is clearly understood, many motion planning problems that appear different in terms of geometry and kinematics can be solved by the same planning algorithms. This level of abstraction is therefore very important. This chapter provides important foundational material that will be very useful in Chapters 5 to 8 and other places where planning over continuous state spaces occurs. Many concepts introduced in this chapter come directly from mathemat- ics, particularly from topology. Therefore, Section 4.1 gives a basic overview of topological concepts. Section 4.2 uses the concepts from Chapter 3 to define the configuration space. After reading this, you should be able to precisely character- ize the configuration space of a robot and understand its structure. In Section 4.3, obstacles in the world are transformed into obstacles in the configuration space, but it is important to understand that this transformation may not be explicitly constructed. The implicit representation of the state space is a recurring theme throughout planning. Section 4.4 covers the important case of kinematic chains that have loops, which was mentioned in Section 3.4. This case is so difficult that even the space of transformations usually cannot be explicitly characterized (i.e., parameterized). 4.1 Basic Topological Concepts This section introduces basic topological concepts that are helpful in understand- ing configuration spaces. Topology is a challenging subject to understand in depth. 127 128 S. M. LaValle: Planning Algorithms The brief treatment given here provides only a brief overview and is designed to stimulate further study (see the literature overview at the end of the chapter). To advance further in this chapter, it is not necessary to understand all of the material of this section; however, the more you understand, the deeper will be your understanding of motion planning in general....
View Full Document

This note was uploaded on 12/29/2011 for the course ME 243a taught by Professor Abamieh during the Fall '09 term at UCSB.

Page1 / 32

ch4 - Chapter 4 The Configuration Space Steven M. LaValle...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online