{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 2.3-5 - 2. Intersection ,AB,...

This preview shows pages 1–3. Sign up to view the full content.

2.3 Venn Diagrams and Set Operations Intersection: The intersection of two sets A and B, A   B, is the set that consists of the elements that are  common to both  A and B.  If A = {1, 2, 3} and B = {2, 3, 4}, then A   B = {2, 3}.    Union:    The Union of  two sets A and B, A   B, is the set that consists of all the elements in A or B or both.  If A = {1, 2, 3} and B  = {2, 3, 4}, then A   B = {1, 2, 3, 4}.  Two sets that have no elements in common are called  disjoint sets . U = {0, 1, 2, …, 20} X = {5, 6, 7, …., 20}, Y = {…, 10, 11, 12}, E = (0, 2, 4, 6, 8, 10}, O = {1, 3, 5, 7, 9}, find: 1. X Y 2. E O 3. X Y 4. E O 5. X (E O) 6. (E X)’ Y 6. X 8. Y DeMorgan’s Laws: (A   B)’ = A’   B’  The complement of the union is the intersection of the complements. (A   B)’ = A’   B’  The complement of the intersection is the union of the complements. Given U = {a, b, c, d, e, f, g}, A = {b, c, g}, and B = {b, c, e}, find: 9. (A   B)’ 10.  A’   B’ 11. (A   B)’ 12. A’   B’ Construct Venn diagrams for each of the following: 13.  B’ 14. A’   B’ 15. B’   A

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2.4: SET OPERATIONS AND VENN DIAGRAMS WITH THREE SETS To do set operations involving three sets, begin inside the parentheses.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern