{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

1.6 Inequalities - x> 3 would be written{x|x> 3(the set...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
1.6: Inequalities Solving inequalities follow all the same rules as solving equations with one exception:   When  multiplying or dividing both sides of an inequality by a negative number, the   inequality sign is  reversed ; that is, if c is a negative number and a > b; then ac < bc and  a b c c < .   Interval notation   shows the beginning and end numbers of the solution set; i.e., (smallest, largest)  in a strict  inequality.  In interval notation  x > 3  would be shown as  (3,   ) x <  3  would be shown as  (- , 3] The bracket is used in conjunction with the equal bar;  , - , and numbers without equal bars use  parentheses. In set-builder notation, 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x > 3 would be written {x|x > 3} (the set of all x such that x is greater than 3) and x < 3 would be written {x|x < 3} . Graph each inequality and write the solution set using both set-builder and interval notation: 1. x < -3 2. 5 x ≤ Describe the graph using both set-builder and interval notation: 3. 4. 4-3 Solve and graph; express solution set in interval notation and set-builder notation: 5.-9x > 36 6. 8x - 11 < 3x – 13 7. 8x + 3 > 3(2x + 1)+ x + 5 8. 14 2 1 3 3 2 2 x x x-≥-+ 9. 3(y – 8) – 2(10 – y) > 5(y – 1) 10. 3 1 2 3 5 2 25 4 2 3 . x x --- ÷...
View Full Document

{[ snackBarMessage ]}