{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

1.6 Inequalities

# 1.6 Inequalities - x> 3 would be written{x|x> 3(the set...

This preview shows pages 1–3. Sign up to view the full content.

1.6: Inequalities Solving inequalities follow all the same rules as solving equations with one exception:   When  multiplying or dividing both sides of an inequality by a negative number, the   inequality sign is  reversed ; that is, if c is a negative number and a > b; then ac < bc and  a b c c < .   Interval notation   shows the beginning and end numbers of the solution set; i.e., (smallest, largest)  in a strict  inequality.  In interval notation  x > 3  would be shown as  (3,   ) x <  3  would be shown as  (- , 3] The bracket is used in conjunction with the equal bar;  , - , and numbers without equal bars use  parentheses. In set-builder notation,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x > 3 would be written {x|x > 3} (the set of all x such that x is greater than 3) and x < 3 would be written {x|x < 3} . Graph each inequality and write the solution set using both set-builder and interval notation: 1. x < -3 2. 5 x ≤ Describe the graph using both set-builder and interval notation: 3. 4. 4-3 Solve and graph; express solution set in interval notation and set-builder notation: 5.-9x > 36 6. 8x - 11 < 3x – 13 7. 8x + 3 > 3(2x + 1)+ x + 5 8. 14 2 1 3 3 2 2 x x x-≥-+ 9. 3(y – 8) – 2(10 – y) > 5(y – 1) 10. 3 1 2 3 5 2 25 4 2 3 . x x --- ÷...
View Full Document

{[ snackBarMessage ]}