2.2,2.3 Graphing Linear Equations &amp; Intercepts

# 2.2,2.3 Graphing Linear Equations &amp; Intercepts -...

This preview shows pages 1–2. Sign up to view the full content.

2.2: Graphing Lines in the Coordinate Plane The solution set for an equation in two variables consists of all order pairs (x, y) that satisfy the  equation.  For a linear equation such as y = 3x + 8, there is an infinite number of ordered pairs that   satisfy the equation.  Rather than writing all of them, a graph shows them as a line extending infinitely  in both directions.   All solutions fall on that line.    Complete the given ordered pairs so that each   ordered pair satisfies the given equation: 1. y =  1 2 2 x +   (-1,  ) ( , 4)   We can graph linear equations by choosing a value for one variable and calculating the value of the  other.  At least two points are required to define a line but 3 points are recommended.  Make a table  of values. 2.    y = x – 1 3. 3 = 2x – y x x - 1 y x 2x - 3 y -4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1 1 2 3 4 x y

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 4

2.2,2.3 Graphing Linear Equations &amp; Intercepts -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online