5.5 Variation, Formulas, Applications

5.5 Variation, Formulas, Applications -...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Formulas:   To solve a formula for a particular variable, treat any variable other than the one for which your  solving as a constant.  Solve as you would any other equation of that type.  Direct Variation :   If  y  varies  directly with  x then as  x  increases  y  also increases proportionally.  In symbols,  y = kx , where  k  is a nonzero  constant, called the  constant of variation  (or  proportionality constant).    Inverse Variation:   If  y  varies  inversely with  x then as  x  increases  y  decreases proportionally.  In symbols,  y =  k / x .   Joint Variation:   If  varies jointly with  and  z then  y = kxz .  If  y  varies directly with  and inversely with  z   then   y =  kx / z . Solve each formula for the specified variable: 1.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/04/2012 for the course MATH 1033 taught by Professor Patriciabishop during the Fall '11 term at Miami Dade College, Miami.

Page1 / 2

5.5 Variation, Formulas, Applications -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online