5.5 Variation, Formulas, Applications

# 5.5 Variation, Formulas, Applications -...

This preview shows pages 1–2. Sign up to view the full content.

Formulas:   To solve a formula for a particular variable, treat any variable other than the one for which your  solving as a constant.  Solve as you would any other equation of that type.  Direct Variation :   If  y  varies  directly with  x then as  x  increases  y  also increases proportionally.  In symbols,  y = kx , where  k  is a nonzero  constant, called the  constant of variation  (or  proportionality constant).    Inverse Variation:   If  y  varies  inversely with  x then as  x  increases  y  decreases proportionally.  In symbols,  y =  k / x .   Joint Variation:   If  varies jointly with  and  z then  y = kxz .  If  y  varies directly with  and inversely with  z   then   y =  kx / z . Solve each formula for the specified variable: 1.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 01/04/2012 for the course MATH 1033 taught by Professor Patriciabishop during the Fall '11 term at Miami Dade College, Miami.

### Page1 / 2

5.5 Variation, Formulas, Applications -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online