14.2 Flaws of Voting Methods

14.2 Flaws of Voting Methods - 14.2FlawsofVotingMethods

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
14.2 Flaws of Voting Methods In the 1950s a mathematical economist, Kenneth Arrow, proved that a   method for determining election  results that is democratic and always fair is a mathematical impossibility .   There are   four fairness  criteria  that mathematicians and political scientists have agreed a fair voting system should meet:  [1] The  majoritority criterion :  If a candidate receives a majority of first-place votes, then that candidate should win.  [2] The   head-to-head criterion:    If a candidate is favored when compared separately with every other  candidate, then that candidate should win.  [3] The  monotonicity criterion :  If a candidate wins an election  and, in a reelection, the only changes are changes that favor the candidate, then that candidate should win the  election.   [4] The  irrelevant alternatives criterion:   If a candidate wins an election and, in a recount, the only  changes are that one or more of the other candidates are removed from the ballot, then that candidate should  still win the election.  See Table 14.23 on page 787 (page 791 in 4 th  edition), comparing voting method to  fairness criteria. The Borda Count method is the only one of the four methods studied that can violate the majority 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 3

14.2 Flaws of Voting Methods - 14.2FlawsofVotingMethods

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online