14.2 Flaws of Voting Methods

# 14.2 Flaws of Voting Methods - 14. ,KennethArrow...

This preview shows pages 1–2. Sign up to view the full content.

14.2 Flaws of Voting Methods In the 1950s a mathematical economist, Kenneth Arrow, proved that a   method for determining election  results that is democratic and always fair is a mathematical impossibility .   There are   four fairness  criteria  that mathematicians and political scientists have agreed a fair voting system should meet:  [1] The  majoritority criterion :  If a candidate receives a majority of first-place votes, then that candidate should win.  [2] The   head-to-head criterion:    If a candidate is favored when compared separately with every other  candidate, then that candidate should win.  [3] The  monotonicity criterion :  If a candidate wins an election  and, in a reelection, the only changes are changes that favor the candidate, then that candidate should win the  election.   [4] The  irrelevant alternatives criterion:   If a candidate wins an election and, in a recount, the only  changes are that one or more of the other candidates are removed from the ballot, then that candidate should  still win the election.  See Table 14.23 on page 787 (page 791 in 4 th  edition), comparing voting method to  fairness criteria. The Borda Count method is the only one of the four methods studied that can violate the majority

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 01/04/2012 for the course MGF 1107 taught by Professor Patriciabishop during the Fall '11 term at Miami Dade College, Miami.

### Page1 / 3

14.2 Flaws of Voting Methods - 14. ,KennethArrow...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online