5.6 Exponents & Scientific Notation

5.6 Exponents & Scientific Notation - 5.6 Exponents...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
5.6 Exponents and Scientific Notation Properties of Exponents: Rule Meaning Example b m b n   = b m+n When multiplying like bases, copy the base and add the  exponents 3 5 (3 4 ) = 3 9 (b m ) n  = b mn When raising a power to a power, keep the base and multiply the  exponents (3 5 ) 4  = 3 20 m m n n b m b - = , b ≠ 0 When dividing like bases, copy the base once and subtract the  exponent in the denominator for the exponent in the numerator. 8 6 2 5 5 5 = b 0  = 1 Any real number, other than zero, that is raised to the zero power  equals 1 1,893 0  = 1 b 1  = b Any base raised to a power of 1 equals itself 5 1  = 5 1 n n b b - = Any number raised to a negative exponent yields the reciprocal  of that number. 2 2 2 2 1 1 5 ; 5 5 5 - - = = Simplify the following: 1. 4 2  * 4 3 2. (-3) 2 (-3) 3 (-3) 3. -4 2 4. (-4) 2 5.   (3 2 ) 3 6. (10 2 ) 4 7. [(-2) 3 ] 5 8. -23 0 9. 3.58 1 10. (-3) 0  + 15 0 11.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

5.6 Exponents & Scientific Notation - 5.6 Exponents...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online