5.6 Exponents &amp; Scientific Notation

# 5.6 Exponents &amp; Scientific Notation - 5.6 Exponents...

This preview shows pages 1–2. Sign up to view the full content.

5.6 Exponents and Scientific Notation Properties of Exponents: Rule Meaning Example b m b n   = b m+n When multiplying like bases, copy the base and add the  exponents 3 5 (3 4 ) = 3 9 (b m ) n  = b mn When raising a power to a power, keep the base and multiply the  exponents (3 5 ) 4  = 3 20 m m n n b m b - = , b ≠ 0 When dividing like bases, copy the base once and subtract the  exponent in the denominator for the exponent in the numerator. 8 6 2 5 5 5 = b 0  = 1 Any real number, other than zero, that is raised to the zero power  equals 1 1,893 0  = 1 b 1  = b Any base raised to a power of 1 equals itself 5 1  = 5 1 n n b b - = Any number raised to a negative exponent yields the reciprocal  of that number. 2 2 2 2 1 1 5 ; 5 5 5 - - = = Simplify the following: 1. 4 2  * 4 3 2. (-3) 2 (-3) 3 (-3) 3. -4 2 4. (-4) 2 5.   (3 2 ) 3 6. (10 2 ) 4 7. [(-2) 3 ] 5 8. -23 0 9. 3.58 1 10. (-3) 0  + 15 0 11.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

5.6 Exponents &amp; Scientific Notation - 5.6 Exponents...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online