5.7 Arithmetic&amp;Geometric Sequences

# 5.7 Arithmetic&amp;Geometric Sequences -...

This preview shows pages 1–2. Sign up to view the full content.

An  arithmetic sequence  (sometimes called an arithmetic progression) is one in which the difference between  successive terms of the sequence is always the same number.  It can be defined recursively as  a 1  = a, a n  = a n-1  + d , where  a  and  d  are real numbers.  The number  a  is the first term and  d  is the common difference.  A sequence can be shown to  be arithmetic if subtracting successive terms yields a constant.  For an arithmetic sequence { a n whose first term is  and whose common difference is  d , the  n th  term or general term is determined by the formula  a n  = a + (n – 1)d .   Determine if the following sequences are arithmetic: 1. 5, 9, 13, 17, … 2. Find the 50 th  term of   5, 9, 13, 17, … 3. Find the 20 th  term of  {s n } = {5n + 9}   Find the general  formula for the

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

5.7 Arithmetic&amp;Geometric Sequences -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online