5.7 Arithmetic&Geometric Sequences

5.7 Arithmetic&Geometric Sequences -...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
An  arithmetic sequence  (sometimes called an arithmetic progression) is one in which the difference between  successive terms of the sequence is always the same number.  It can be defined recursively as  a 1  = a, a n  = a n-1  + d , where  a  and  d  are real numbers.  The number  a  is the first term and  d  is the common difference.  A sequence can be shown to  be arithmetic if subtracting successive terms yields a constant.  For an arithmetic sequence { a n whose first term is  and whose common difference is  d , the  n th  term or general term is determined by the formula  a n  = a + (n – 1)d .   Determine if the following sequences are arithmetic: 1. 5, 9, 13, 17, … 2. Find the 50 th  term of   5, 9, 13, 17, … 3. Find the 20 th  term of  {s n } = {5n + 9}   Find the general  formula for the 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/04/2012 for the course MGF 1107 taught by Professor Patriciabishop during the Fall '11 term at Miami Dade College, Miami.

Page1 / 2

5.7 Arithmetic&Geometric Sequences -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online