This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: m n ax bx : if m < n, the horizontal asymptote is a y = 0; if m = n , the horizontal asymptote is a y = a / b ; if m > n , the oblique asymptote is y = a / b x mn . Use the graphs to find the limits: (1) 2 lim ( ) x f x → =3 (2) 2 lim ( ) x f x → = No limit 3. 2 lim ( ) x f x → = lim ( ) x f x →±∞ = 3 Find the indicated limits, if it exists: 4. 3 2 3 lim 3 x x x → + =x 2.9 2.99 2.999 3.000 3.001 3.01 3.1 f(x) (5) 2 2 6 lim 2 x x x x → +=x 1.900 1.990 1.999 2.000 2.001 2.010 2.100 f(x) (6) 9 3 lim 9 x x x →=x 8.900 8.990 8.999 9.000 9.001 9.010 9.100 f(x) Find ( 29 lim x f x →∞ and ( 29 lim x f x →∞ : (7) f(x) = 1 – x + 2x 2 – 3x 3 x 1,000 10,000 100,000 1,000,000 f(x) x1,00010,000100,0001,000,000 f(x) lim ( ) x f x →∞ = lim ( ) x f x →∞ = (8) ( 29 3 3 1 3 2 6 2 x f x x x=+ Homework: 148, 54, 55, Pages 6972...
View
Full Document
 Fall '08
 Staff
 Calculus, Limits, lim, Rational function, polynomial functions

Click to edit the document details