2.5 Marginal Analysis &amp; Approximations...

# 2.5 Marginal Analysis &amp;amp; Approximations... - MAC2233...

This preview shows pages 1–2. Sign up to view the full content.

MAC2233 (2.5) MDC- North Marginal Analysis  is the use of the derivative to approximate change in a quantity that results from a one-unit increase  in production.  Suppose  R(x)  is the revenue generated when  x  units of a particular commodity are produced and  P(x)  is  the corresponding profit.  When  x = x 0  units are being produced, then: Marginal Revenue   is   R’(x) .   It approximates   R(x 0   + 1) – R(x 0 ),   the additional revenue generated by  producing one more unit. Marginal Profit  is  P(x 0 ) .   It approximates  P(x 0  + 1) – P(x 0 ),  the additional profit generated by producing one  more unit. Marginal Cost:    If   C(x)   is the total cost of producing   x   units, then the marginal cost is   C’(x) , which  approximates the additional cost   C(x 0  + 1) – C(x 0 when the level of production is increased by one unit. Approximation by Increments:

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## 2.5 Marginal Analysis &amp;amp; Approximations... - MAC2233...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online