4.1 Exponential Functions

4.1 Exponential Functions - MAC2233 (3.4) North FIU, MDC-

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
MAC2233 (3.4) FIU, MDC- North 4.1 Exponential Functions Exponential Function:     f(x) = b x  (b > 0, b ≠ 1) for every real number  x .  For  b > 1 , f(x) is constantly increasing,  x x f x and f x lim ( ) 0, lim ( ) →-∞ →∞ = = +∞ .     For   0   <   b   <   1 ,   f(x)   is   constantly   decreasing,  x x f x and f x lim ( ) , lim ( ) 0 →-∞ →∞ = +∞ = .   [See your book for a review of definitions and basic properties of exponents.].   Compound Interest:    If   P  dollars are invested at an annual interest rate  r  (expressed as a decimal) and interest is  compounded  k  times a year, the  future value  (balance)  B(t)  after  t  years will be  kt r B P k 1 = + ÷ ; if it is compounded  continuously, the balance will be  rt B Pe = .  In order to have a given balance  B  in  t  years invested an annual rate  compounded   k   times a year, the Principal  
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 4

4.1 Exponential Functions - MAC2233 (3.4) North FIU, MDC-

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online