9.6 Bayes' Formula

9.6 Bayes' Formula - 9.6 Bayes Formula IfP(E

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
9.6 Bayes’ Formula If P(E F) is known for two events E and F, then Bayes’ formula allows us to find  P(F E).   Bayes’ Formula:   ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ... i i i n n P F P E F P F E P F P E F P F P E F × = × + + × 1 1 .  Using a tree diagram, the numerator is the  product of the probabilities of arriving at the particular outcome  ( 29 i P F E and the denominator is the sum of the products of each branch leading to outcome E. 1. For two events E and F, P(E) = .35, P(F|E) = .6, and P(F|E’) = .2.  Find: a. P(E F) b. P(E F’) c. P(E’|F) d. P(E’|F’) 2. A scientist is 75% confident that hypothesis A is true and is 90% confident that event B will occur if event  A has occurred but only a 50% chance of occurring if A has not occurred:   P (A)  = .75,   P (B|A)  = .9, and P(B| A’) = .5.   Find: a. P(A B) b. P(A B’) c. P(A’|B)
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/04/2012 for the course MGF 1106 taught by Professor Nicoli-succo during the Fall '08 term at FIU.

Page1 / 2

9.6 Bayes' Formula - 9.6 Bayes Formula IfP(E

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online