{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

9.6 Bayes' Formula

# 9.6 Bayes' Formula - 9.6 Bayes Formula IfP(E F),(F E...

This preview shows pages 1–2. Sign up to view the full content.

9.6 Bayes’ Formula If P(E F) is known for two events E and F, then Bayes’ formula allows us to find  P(F E).   Bayes’ Formula:   ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ... i i i n n P F P E F P F E P F P E F P F P E F × = × + + × 1 1 .  Using a tree diagram, the numerator is the  product of the probabilities of arriving at the particular outcome  ( 29 i P F E and the denominator is the sum of the products of each branch leading to outcome E. 1. For two events E and F, P(E) = .35, P(F|E) = .6, and P(F|E’) = .2.  Find: a. P(E F) b. P(E F’) c. P(E’|F) d. P(E’|F’) 2. A scientist is 75% confident that hypothesis A is true and is 90% confident that event B will occur if event  A has occurred but only a 50% chance of occurring if A has not occurred:   P (A)  = .75,   P (B|A)  = .9, and P(B| A’) = .5.   Find: a. P(A B) b. P(A B’) c. P(A’|B) d. P(A’|B’) 3. On a given weekend, a company can buy television advertising time for a college football game, a baseball

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}