R4ps - Chapter 3 Application of derivatives. (Review)...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 3 Application of derivatives. (Review) Stephen Suen Chapter 4 Exponential and logarithmic functions – p. 1/10
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4.1 Exponential functions A . Loosely speaking, an exponential function (with base b , where b > 0 and b n = 1 ) is a function of the form f ( x ) = b x . B . When b > 1 , we have lim x →∞ b x = lim x →-∞ b - x = , lim x →-∞ b x = lim x →∞ b - x = 0 . C . When b < 1 , we have lim x →∞ b x = lim x →-∞ b - x = 0 , lim x →-∞ b x = lim x →∞ b - x = . D . Note that 2 x is much bigger than x 2 when x → ∞ . We say that exponential functions y = b x , where b > 1 , exhibit exponential growth .” Similarly, 0 . 5 x = 1 2 x , decreases to 0 as x → ∞ , and we say that the exponential function y = b x , when b < 1 , exhibits “ exponential decay .” Chapter 4 Exponential and logarithmic functions – p. 2/10
Background image of page 2
Note that 2 0 = 3 0 = 1 , and that the graphs of y = 2 x , y = 2 - x are mirror images of each about the y -axis. Chapter 4 Exponential and logarithmic functions – p. 3/10
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 10

R4ps - Chapter 3 Application of derivatives. (Review)...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online