{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# quiz6a - Math 3101(Fall 2010 Name Quiz#6 1 Let X and Y have...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 3101 (Fall 2010) Name: Quiz #6 1. Let X and Y have this joint distribution: (a) Compute the expectations E(X) and Y) ’a d tile vaiienoes VaT(X) and Vera”). 5M3Mﬂ23 +2'.3 #47 g{y):0°.2+ HZ +32% + 4 '. 3 5‘ ,Z—raéi' /-2=E /- E/A’Z)=__/2V./‘I/:"/ '. 3+4} ‘ ,3+/.2 : /.§' %W{X): [vs—m" 6N2: E/W-.2+4-.3+/623 =.2+/~2¢—4,g: 42 Mar/7): 602-222 = (b) Compute the covariance 007) (X , Y). 1m: 7) -—-— m7) - Hem) : {2233+ 2/5)?“ X “'- 11.? ‘7 2. Let X be a random variable with density l 2 l 2 3 = MN.” 35' a y a fxtv) { 0 otherwise I E '7 Z L i f J“ “9 (Db-<1? We“! dost :3 xc’w) _ «H—l ....__. X4” Xvi; 6 J’Nrrwhlcl Sulfa; £535) 3. Suppose X and Y are independent random variables with expectations E (X) = 1, E(Y) : 2, and second moments E(X2) = 2, E (Y2) = 5. Compute the expectation E ((X + Y)2). anew} =F/X 3— 2X7 + 72) : E/XZ’H JEWEL-79’) + Eff?) :39. 1.24.5: m .g€¢ Of é‘c‘pé(/JL'L ‘ipMQ d ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

quiz6a - Math 3101(Fall 2010 Name Quiz#6 1 Let X and Y have...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online