This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: constants and the mass of the Sun. Therefore we can write a similar equation for any planet that orbits the Sun. T 1 2 /r 1 3 = 4 2 /G . M S EQ.5 T 2 2 /r 2 3 = 4 2 /G . M S EQ.6 And therefore can write Keplers third law T 1 2 /r 1 3 = T 2 2 /r 2 3 EQ.7 This was a magnificent result for Newtons theory. Incidentally, scientists could then use these results to find the mass of the sun for the first time. Writing EQ.5 for the EarthSun system, we have T E 2 /r ES 3 = 4 2 /G . M S EQ.8 where T E = 3.16x10 7 sec r ES = 1.50x10 11 m G = 6.67x1011 N m 2 /kg 2 Solving for the mass of the Sun we have M S = [4 2 /G] r ES 3 /T E 2 EQ.9 M S = 2.0x10 30 kg...
View
Full
Document
 Spring '09
 JamesR.Boyd
 Force

Click to edit the document details