Fig16-06_XmasTree_

Fig16-06_XmasTree_ - SINGLE PERIOD INVENTORY MODEL...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SINGLE PERIOD INVENTORY MODEL - CHRISTMAS TREE PROBLEM PROBLEM: Noble Fir Parameter Values: Mean of Demand Distribution: mu = 2000 Stand. Deviation of Demand Distribution: sigma = 500 Cost per Item Procured: c = 3.00 0.50 1.00 9.00 Optimal Values: Optimal Order Quantity: Q* = 2215 Expected Demand: mu = 2000 Total Expected Cost: TEC(Q*) = \$7,910.35 Expected Shortages: B(Q*) = 110.15 Probability of Shortage: P[D>Q*] = 0.33 Additional Cost for Each Leftover Item Held: h E = Penalty for Each Item Short: p S = Selling Price per Unit: p R = A B C D E F G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 D L(D ) 0 .0 0 .39 8 9 0 .0 1 0 .39 4 0 0 .0 2 0 .38 9 0 0 .0 3 0 .38 4 1 0 .0 4 0 .379 3 0 .0 5 0 .374 0 .0 6 0 .36 9 7 0 .0 7 0 .36 4 9 0 .0 8 0 .36 0 2 0 .0 9 0 .35 6 0 .10 0 .35 0 9 0 .1 0 .34 6 4 0 .12 0 .38 14 0 .13 0 .3 73 0 .14 0 .3 28 0 .15 0 .328 4 0 .16 0 .324 0 0 .17 0 .319 7 0 .18 0 .315 4 0 .19 0 .31 1 0 .20 0 .30 6 9 0 .21 0 .30 27 0 .2 0 .29 8 6 0 .23 0 .29 4 0 .24 0 .29 0 4 0 .25 0 .28 6 3 0 .26 0 .28 24 0 .27 0 .278 4 0 .28 0 .274 5 0 .29 0 .270 6 0 .30 0 .26 8 0 .31 0 .26 30 0 .32 0 .25 9 2 0 .3 0 .25 5 0 .34 0 .25 18 0 .35 0 .24 8 1 0 .36 0 .24 5 0 .37 0 .24 0 9 0 .38 0 .2374 0 .39 0 .23 9 0 .4 0 0 .230 4 0 .4 1 0 .2 70 0 .4 2 0 .2 36 0 .4 3 0 .2 0 3 0 .4 0 .216 9 0 .4 5 0 .2137 0 .4 6 0 .210 4 0 .4 7 0 .20 72 0 .4 8 0 .20 4 0 0 .4 9 0 .20 9 0 .5 0 0 .19 78 0 .5 1 0 .19 4 7 0 .5 2 0 .19 17 0 .5 3 0 .18 7 0 .5 4 0 .18 5 7 0 .5 0 .18 28 0 .5 6 0 .179 0 .5 7 0 .17 1 0 .5 8 0 .174 2 0 .5 9 0 .1714 0 .6 0 0 .16 8 7 0 .6 1 0 .16 5 9 0 .6 2 0 .16 3 0 .6 3 0 .16 0 6 0 .6 4 0 .15 8 0 0 .6 5 0 .15 4 0 .6 0 .15 28 0 .6 7 0 .15 0 3 0 .6 8 0 .14 78 0 .6 9 0 .14 5 3 0 .70 0 .14 29 0 .71 0 .14 0 5 0 .72 0 .138 1 0 .73 0 .135 8 0 .74 0 .13 4 0 .75 0 .1312 0 .76 0 .128 9 0 .7 0 .126 7 0 .78 0 .124 5 0 .79 0 .12 3 0 .8 0 0 .120 2 0 .8 1 0 .1 8 1 0 .8 2 0 .1 6 0 0 .8 3 0 .1 4 0 0 .8 4 0 .1 20 0 .8 5 0 .1 0 0 .8 6 0 .10 8 0 0 .8 7 0 .10 6 1 0 .8 0 .10 4 2 0 .8 9 0 .10 23 0 .9 0 0 .10 4 0 .9 1 0 .0 9 8 6 0 0 .9 2 0 .0 9 6 8 0 0 .9 3 0 .0 9 5 0 3 0 .9 4 0 .0 9 328 0 .9 5 0 .0 9 15 6 0 .9 6 0 .0 8 9 8 6 0 .9 7 0 .0 8 19 0 .9 8 0 .0 8 6 5 4 0 .9 0 .0 8 4 9 1 1.0 0 .0 8 3 2 1.0 1 0 .0 8 174 1.0 2 0 .0 8 0 19 1.0 3 0 .0 78 6 1.0 4 0 .0 7 16 1.0 5 0 .0 75 6 80 ....
View Full Document

• Fall '11
• Dr.Keeney
• optimal order quantity, Single Period Inventory, demand distribution, Leftover Item Held, CHRISTMAS TREE PROBLEM

{[ snackBarMessage ]}

Page1 / 2

Fig16-06_XmasTree_ - SINGLE PERIOD INVENTORY MODEL...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online