Analytical Mech Homework Solutions 44

# Analytical Mech Homework Solutions 44 - projection on the...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: projection on the xy-plane make an angle φ with the x-axis: x = s sin θ cos φ , and Fx = Fr sin θ cos φ = mx y = s si n θ si n φ , and Fy = Fr sin θ sin φ = my z = s cos θ , and Fz = − mg + Fr cos θ = mz Since Fr = −c2 s = −c2 ( x + y 2 + z 2 ) , the differential equations of motion are not 2 2 separable. mx = −c2 s 2 sin θ cos φ = −c2 sx dx dx ds dx m = m ⋅ = ms = −c2 sx dt ds dt ds dx c2 c = − ds = −γ ds , where γ = 2 m x m x ln x − ln x = ln = −γ s x θ x z g γ x g γx From eqn 4.3.16, + 2 max + 2 ln 1 − max = 0 x γ γ γ x 2 3 uu From Appendix D: ln (1 − u ) = −u − − − … for u < 1 23 3 γx γx γ 2 xmax 2 γ 3 xmax − + terms in γ 4 ln 1 − max = − max − 2 3 x x 2x 3x 2 3 z xmax gxmax gxmax gxmax gγ xmax + − − − + terms in γ 2 = 0 2 3 γx γx 2x 3x x 2 xmax + 3x 3x 2 z ≈0 xmax − 2γ gγ 1 xmax 3x 9 x 2 3x 2 z 2 ≈− ± + gγ 4γ 16γ 2 1 3 x 3 x 16γ z 2 ± xmax ≈ − 1 + 4γ 4γ 3g Since xmax > 0 , the + sign is used. From Appendix D: 1 2 16γ z 2 8γ z 1 16γ z 3 − 1 + = 1+ + terms in γ 3g 3g 8 3g 3x 3x 2 x z 8 x γ z 2 + + − + terms in γ 2 xmax = − 2 4γ 4γ g 3g 12 s y x = x e −γ s y = y e −γ s Similarly 4.15 z φ ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online