Analytical Mech Homework Solutions 47

# Analytical Mech Homework Solutions 47 - tmin = 4.18 2 =2...

This preview shows page 1. Sign up to view the full content.

min 2 2 t π == 4 .18 Equation 4.4.15 is 22 2c o s tan 2 AB AB ψ = the z-axis through a Transforming the coordinate axes xyz to the new axes xyz ′′′ given, from or, cos sin xx y ′′ =− , and sin co yx y = + From eqn. 4.4.10: 2cos sin xy y += ∆ by a rotation about n angle Section 1.8: cos sin y =+ , sin cos y ′ = −+ s Substitu x AA B B 2 A 2 ting: () 1 cos 2 cos sin sin y y ψψ x 2 2 cos sin cos sin cos sin x y y AB + For x t  2 2 2 2 1 sin 2 cos sin cos sin y y B ++ + = o be a major or minor axis of the ellipse, the coefficient of x y B B must vanish. sin cos sin 0 + B, 2cos sin sin 2 = and cos sin cos2 −= 1 tan 2   = From Appendix sin2 0 BB −− + = 1 2 c o s B B  o s tan 2 AB = within a 4.19 Shown below is a face-centered cubic lattice. Each atom in the lattice is centered
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Ask a homework question - tutors are online