dq2 - Quotient Law a^m / a^n = a^(m - n) LHS = a^m / a^n =...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Post a response to the following: Review section 10.2 (p. 692) of your text. Describe two laws of exponents and provide an  example illustrating each law. Explain how to simplify your expression. How do the laws work with rational exponents? Provide  the class with a third expression to simplify that includes rational (fractional) exponents. Rule Explanation Examples Product Law a^m * a^n = a^(m + n) LHS = a^m * a^n = (a * a * … m times) * (a * a * … n times) = (a * a * …) (m + n) times = a^(m + n) = RHS 3^7 * 3^2 = 3^(7 + 2) = 3^9 5^a * 5^b = 5^(a + b)
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Quotient Law a^m / a^n = a^(m - n) LHS = a^m / a^n = (a * a * m times) / (a * a * n times) = (a * a * ) (m - n) times = a^(m - n) = RHS 4^7 / 4^2 = 4^(7 - 2) = 4^5 m^3 / m^-2 = m^[3 (-2)] = m^5 The laws work with rational exponents in the same way that they work with integer exponents. For example, a^(1/p) * a^(1/q) = a^(1/p + 1/q) = a^{(p + q)/pq} and a^(1/p) / a^(1/q) = a^(1/p - 1/q) = a^{(q - p)/pq} A third example for classmates to solve can be: Simplify the expression 2^(1/8) * 2^(1/12) The Answer is: 2^(1/8 + 1/12) = 2^(3/24 + 2/24) = 2^(5/24)....
View Full Document

Ask a homework question - tutors are online