{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

t10 - CS3230 Tutorial 10 1 Consider the following problem...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
CS3230 Tutorial 10 1. Consider the following problem: Input: Given a weighted graph G , two vertices u and v in G , and a value d . Question: Is there a path from u to v of weight at most d ? Is the above problem in NP? Could it be NP-complete? 2. In class we saw that it is open at present whether P = NP or not. It is also open whether NP = EXP or not. Is it possible that both P = NP and NP = EXP are true? 3. It can be shown that knapsack problem is NP-complete. Thus, if knapsack problem can be solved in polynomial time, then all problems in NP can be solved in polynomial time. Professor S claimed that he could solve the discrete knapsack problem in time proportional to C * n (see the dynamic programming algorithm done in class), where C is the capacity of the knapsack and n is the number of objects in the problem. Thus the discrete knapsack problem is in P. Thus, Professor S claimed that he has shown P=NP. Could you find a flaw in his argu- ment?
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern