Review06 - ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ....

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
MULTIPLE LINEAR REGRESSION EXAMPLE Here is the numerical example of multiple linear regression analysis that includes estimates and ANOVA table produced in R language. Please be sure before EXAM 3 that you un- derstand where ANOVA F statistics as well as all t statistics for individual α and β i -s for i   1 , 2 , 3 , 4 come from. Please also be confident how to interpret the value of R 2 . What is the difference between R 2 and R 2 adj ? Please note that in R output in ANOVA table it decomposes our SS Regr into four parts that sum up to SS Regr . X1 X2 X3 X4 Y 5 12 1 0.5 13 8 13 4 0.6 21 18 11 4 0.7 67 20 23 7 0.4 73 21 20 8 0.3 68 21 12 2 0.5 72 22 34 5 0.4 77 Here is the R output: > datamlr <- read.table("mlr.data.txt",header=TRUE) > > mymlr<- lm(Y ¢ X1+X2+X3+X4, data=datamlr ) > > summary(mymlr) Call: lm(formula = Y ¢ X1 + X2 + X3 + X4, data = datamlr) Residuals: 1 2 3 4 5 6 7 2.283 -3.571 1.427 4.360 -1.909 -1.331 -1.259 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -21.28747 15.03519 -1.416 0.29249 X1 3.91715 0.36283 10.796 0.00847 ** X2 0.15119 0.32980 0.458 0.69164 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
X3 -0.06084 1.07269 -0.057 0.95993 X4 21.33153 20.29970 1.051 0.40358
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Residual standard error: 4.796 on 2 degrees of freedom Multiple R-squared: 0.9894, Adjusted R-squared: 0.9681 F-statistic: 46.5 on 4 and 2 DF, p-value: 0.02116 > > mymlra<- aov(Y X1+X2+X3+X4, data=datamlr ) > summary(mymlra) Df Sum Sq Mean Sq F value Pr(>F) X1 1 4248.4 4248.4 184.6729 0.005371 ** X2 1 0.9 0.9 0.0394 0.861068 X3 1 4.1 4.1 0.1784 0.713806 X4 1 25.4 25.4 1.1042 0.403577 Residuals 2 46.0 23.0---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 > >4248.4 + 0.9 + 4.1 + 25.4 [1] 4278.8 > > predict(mymlra) 1 2 3 4 5 6 7 10.71750 24.57077 65.57304 68.63965 69.90923 73.33107 78.25874 > > residuals(mymlra) 1 2 3 4 5 6 7 2.282502 -3.570767 1.426955 4.360349 -1.909234 -1.331066 -1.258738 > > confint(mymlra) 2.5 % 97.5 % (Intercept) -85.978673 43.403733 X1 2.356027 5.478274 X2-1.267834 1.570216 X3-4.676251 4.554566 X4-66.011020 108.674083 > 2...
View Full Document

This note was uploaded on 01/08/2012 for the course STA 3024 taught by Professor Ta during the Summer '08 term at University of Florida.

Page1 / 2

Review06 - ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online