MODULAR FORMS-page50

MODULAR FORMS-page50 - ) Using Exercise 5.2 show 1 2 (0;2 )...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
46 LECTURE 5. TRANSFORMATIONS OF THETA FUNCTIONS Exercises 5.1 Show that the constant ζ ( M ) in (5.16) is equal to i δ - 1 2 ( γ | δ | ) when γ is even and δ is odd. If γ is odd and δ is even, it is equal to e - πiγ/ 4 ( δ γ ). Here ( x y ) is the Jacobi-Legendre symbol, where we also set ( 0 1 ) = 1. 5.2 Extend the transformation law for theta functons by considering transformations defined by matrices α β γ δ with determinant n not necessary equal to 1: e - πi nkγz 2 γτ + δ ϑ ( nz γτ + δ ; ατ + β γτ + δ ) Th( nk, Λ τ ) a 0 b 0 , where ϑ ( z ; τ ) Th( k, Λ τ ) ab and ( a 0 ,b 0 ) = ( αa + γb - kγα 2 ,βa + δb + kδβ 2 ) . 5.3 Using the previous exercise show that (i) 1 2 1 2 ( z ; τ/ 2) = ϑ 0 1 2 ( z ; τ ) ϑ 1 2 1 2 ( z ; τ ) for some constant A ; (ii) A 0 ϑ 1 2 0 ( z ; τ/ 2) = ϑ 00 ( z ; τ ) ϑ 1 2 0 ( z ; τ ) for some constant A 0 ; (iii) ( Gauss’ transformation formulas ϑ 1 2 0 (0; τ/ 2) ϑ 1 2 1 2 ( z ; τ/ 2) = 2 ϑ 1 2 0 ( z ; τ ) ϑ 1 2 1 2 ( z ; τ ) , ϑ 0 1 2 (0; τ/ 2) ϑ 1 2 0 ( z ; τ/ 2) = 2 ϑ 00 ( z ; τ ) ϑ 1 2 0 ( z ; τ ) , [Hint: Apply (3.14) to get A = A 0 , then differentiate (i) and use the Jacobi theorem]. 5.4 ( Landen’s transformation formulas
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ) Using Exercise 5.2 show 1 2 (0;2 ) 1 2 1 2 (2 z ;2 ) = 1 2 ( z ; ) 1 2 1 2 ( z ; ) , 1 2 (0;2 ) 1 2 (2 z ;2 ) = 00 ( z ; ) 1 2 ( z ; ) , 5.5 Let n be an odd integer. (i) Show that, for any integer , 1 2 ( n ; ) depends only on the residue of modulo n . (ii) Show that n-1 Y =1 1 2 ( n ; ) = n-1 Y =1 1 2 ( 2 n ; ) . (iii) Using Exercises 5.3 and 5.4 show that 00 ( z ;2 ) 1 2 ( z ;2 ) 1 2 (2 z ;2 ) 00 (0;2 ) 1 2 (0;2 ) 1 2 (0;2 ) = 00 ( z ; ) 1 2 ( z ; ) 1 2 ( z ; ) 00 (0; ) 1 2 (0; ) 1 2 (0; ) ....
View Full Document

Ask a homework question - tutors are online