This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Dr. Gundersen Phy 205DJ Final Exam 12 May 2010 Signature: Name: 1 2 3 4 5 6 Idnumber: DO ALL SIX PROBLEMS! TO GET PARTIAL CREDIT IN PROBLEMS 3  6 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED: [ ] Dr. Gundersen 2O, 9:30  10:20 a.m. [ ] Dr. Nepomechie 2P, 11:00  11:50a.m. [ ] Dr. Alvarez 2Q, 12:30  1:20 p.m. [ ] Dr. Barnes 2R, 2:00  2:50 p.m. [ ] Mr. PerezVeitia 2S, 3:30  4:20 p.m. vector a = a x i + a y j , a =  vector a  = radicalBig a 2 x + a 2 y , = tan 1 a y a x , a x = a cos , a y = a sin vector b = b x i + b y j + b z k , b =  vector b  = radicalBig b 2 x + b 2 y + b 2 z , b = vector b /b, vector v AC = vector v AB + vector v BC vector a vector b =  vector a  vector b  cos = a x b x + a y b y + a z b z vector a vector b = ( a y b z a z b y ) i + ( a z b x a x b z ) j + ( a x b y a y b x ) k ,  vector a vector b  =  vector a  vector b  sin  x = x + v t + 1 2 at 2 , v 2 = v 2 + 2 a ( x x ) , x = x + 1 2 ( v + v ) t, x = x + vt 1 2 at 2 v = v + at, v av = 1 2 ( v + v ) = v + 1 2 at 2 , vector r ( t ) = vector r + vector v t + 1 2 vector a t 2 , vector v ( t ) = vector v + vector a t = + t, = + t + 1 2 t 2 , 2 = 2 + 2 (  ) vector v = dvector r dt , vector v av = vector r 1 vector r t 1 t , x 1 x = integraldisplay t 1 t v x ( t ) dt, vector a = dvector v dt , vector a av = vector v 1 vector v t 1 t , v x 1 v x = integraldisplay t 1 t a x ( t ) dt vector F net = mvector a = dvector p dt = d ( mvector v ) dt , vector F BA = vector F AB ,  vector F g  = mg,  vector f s  s F N ,  vector f k  = k F N vector F = mv 2 r r = m 2 r r , vector F s = k vector d , vector F = dU dx i dU dy j dU dz k , vector F = dU ( r ) dr r Physics 205DJ Final Exam 12 May 2010 Dr. Gundersen Phy 205DJ Final Exam 12 May 2010 vector F = GMm r 2 r , vector p = mvector v , vector p 1 i + vector p 2 i = vector p 1 f + vector p 2 f , vector p = vector p f vector p i = integraldisplay t f t i vector F dt = vector F av t vector r ( t ) = r (cos i + sin j ) = r r , vector v ( t ) = r ( sin i + cos j ) = r , = t + vector a ( t ) = 2 r (cos i + sin j ) = 2 r r = v 2 r r , = s r , = d dt = 2 f = 2 /T = v/r T 2 = 4 2 GM r 3 , vector a tot = vector a r + vector a t = v 2 r r + r , = d dt = d 2 dt 2 , avg = t K = 1 2 mv 2 + 1 2 I 2 = p 2 2 m + L 2 2 I = 1 2 I com 2 + 1 2 Mv 2 com , P = dW dt = vector F vector v = vector vector W = F x x + F y y + F z z = vector F vector d =  vector F  vector d  cos = integraldisplay vector r B vector r A vector F dvector r = integraldisplay d = K U = integraldisplay x f x i F ( x ) dx = W = K, U ( y ) = mgy, U ( x ) = 1 2 kx 2 , E th = f k d P = dE dt , E mech = K + U, W = E mech + E th...
View Full
Document
 Fall '11
 Galeazzi
 Work

Click to edit the document details