This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MPO 662 – Problem Set 4 1. The LaxWendroff method replaces timederivatives with spatial derivatives and the lat ter are approximated with centered differences. An alternate algorithm known as the Warming and Beam (Tannehill et al. , 1997; Durran, 1999) replaces the 1st and 2nd spatial derivatives with upstream differences: u n +1 j = u n j μ u n j u n j 1 μ (1 μ ) 2 u n j 2 u n j 1 + u u j 2 (1) where μ is the Courant number. Show that the truncation error of this scheme is O (Δ t 2 , Δ x 2 , Δ x Δ t ) and that it is stable for 0 ≤ μ ≤ 2. Hint: Derive the modified equation up to second order to show that second order nature of the scheme. 2. Determine the order of accuracy and the stability properties of the slant derivative ap proximation to the advection equation: u n +1 j u n j Δ t + c 2 u n +1 j u n +1 j 1 Δ x + u n j +1 u n j Δ x ! = 0 (2) Hint: The expansions must be in space and time, be careful in your derivations 3. The advection operator does not produce dissipation at all, and for this reason it is often3....
View
Full
Document
This note was uploaded on 01/08/2012 for the course MPO 662 taught by Professor Iskandarani,m during the Spring '08 term at University of Miami.
 Spring '08
 Iskandarani,M

Click to edit the document details