ECET 305 Week 2 Homework

# ECET 305 Week 2 Homework - e t = 8sin ω t for t> 0...

This preview shows pages 1–2. Sign up to view the full content.

ECET 305 Homework – Week 2 1. (TCO 1) Use a trigonometric identity to determine the Laplace transform of  f ( t ) for  (Points : 8) None of the above; see Problem Work. 2. (TCO 1) The following differential equation should be solved using partial fraction expansion under the  initial conditions that are given: (Points : 8) None of the above; see Problem Work. 3. (TCO 1) This is an example of a forcing function with two ‘steps’. Use the Heaviside step function  approach to determine  L { f ( t ) for  t  >  0.   (Points : 8)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
None of the above; see Problem Work. 4. (TCO 1) For the following circuit, the input function is
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: e ( t ) = 8sin( ω t ) for t > 0. Resistors R1 and R2 are both 1 kohms. Find the voltage v 2( t ). (Points : 8) None of the above; see Problem Work. 5. (TCO 1) The unit impulse function is not physically realizable. In fact, it is not a normal mathematical function at all. So, why is the unit impulse function of interest to engineers? Type as much of your answer as possible in the space below. If you need to reference your Problem Work for this assessment, type ‘See Problem Work’ at that point in your answer. (Points : 8)...
View Full Document

## This note was uploaded on 01/09/2012 for the course ECET 305 taught by Professor Unknown during the Fall '11 term at DeVry Addison.

### Page1 / 2

ECET 305 Week 2 Homework - e t = 8sin ω t for t> 0...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online