Exam 1 - Physics 2014 7 Name 7 ~ r r w Exam 1 — Spring...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Physics 2014 7 Name: 7 . - . ~ r r w . . Exam 1 — Spring 2011 L" Laboratory Section: 00‘? General Instructions: . .. . P5 "0 , This closed—book 50 minute exam may be supplemented by a valid reference sheet, stapled to the exam upon submission. Incorrect name, seat, or lab section information will receive a 10—point penalty; illegible or pen responses will earn zero credit. Record all work in pencil using proper written English. Good Luck! Section 1 — Conceptual Physics . [ 2 Points Each] Instructions: Questions are grouped into related situations. Circle or provide each question’s best answer. 1) Regarding physical quantities (Iii, Z1): 0 Objects in ‘free—fall’ experience no gravitational acceleration ( true /). 0 An object’s instantaneous velocity is ( never // always ) equal to its average vel city. 0 Physical quantity algebraic signs may be described withoutsin a coordinate system ( true / ). Graph slopes may be (positive only / negative only / it osiiefgrwe tie. Acceleration implies an object’s velocity ( increases / decreass // remains constant). Areas under a graph may be ( positive only / negative onl / ). Objects with tangential accelerations are in UCM (/ f e ). Vectors may be moved within a coordinate system without changing them ® false ). 0 Gravitational accelerations are always negative ( true / ). o ‘Decelerations’ may be positive (@I false ). , 0 By definition, average velocity involves a/an ‘ wt i of time, whereas instantaneous velocity refers to a/an ‘n g ‘m of time. 0 Net displacement is the area under an object’s 513 'in vs. time graph. The slope of a velocity vs. time graph is an object’s s“ * it? ‘1 mm The acceleration keeping an object upon a constant-radius path is directed 3m {3; . The description of motion with respect to some point of reference is called a/an gt: 5% :men 4; . Scientist Ng% famously demonstrated different objects experi need the same gravitational acceleratio by dropping them from the leaning tower of Pisa. 2) A projectile moves between two different points near the earth’s surface without air resistance. \ 0 Its acceleration is different on the way up and on the way down ( true / ).. t? o The projectile’s horizontal distance traveled is its range ( true ). 32 p l. , o The path the projectile follows through space is its $39. 0 c, ,1}, 3 ,1 .7 7 Section 2 — Problems [ Points as Indicated ] General Instructions: Provide a complete solution to each of the following problems. Some problems may be dependent upon previous calculations; if so, full credit will be awarded for the correct simplified algebraic form with all constants correctly substituted unless the previous calculation is of ‘fundamental’ skill level. All solutions must: 1) Use ‘standard’ coordinates unless otherwise specified, 2) be solved algebraically before substituting numerical information (other than zeros), 3) use SI units everywhere appropriate, 4) include any necessary special diagrams, and 5) have boxed final answers. Vectors must be represented in component form. Useful information: 1 knot = 1 nautical mile per hour = 1.15mph Rock and Baiwnmbiem [ 5 Points Each 1‘ 3) A balloon carrying a basket is descending at a constant velocity of 20.0m/s. A person A. in the basket throws a rock with an initial velocity of 15 ,Om/s horizontally perpendicular ' to the path of the descending balloon, and 5.00s later this person sees the rock strike the ground. Place the CS origin on the rock’s initial position. a) How high was the balloon when the rock was thrown? “[fundamental] ; 15'" m/S Yfi? Yc= Yo+ l/ay'l'4-’/:2~6\y+at I y - 0m 20.0m/sg J/ F ’ y° = VL‘ Vey‘l’ ‘yflqY+2 ‘ - 1 my: Voy— 20% = O~_(-20%)(ss)-%1(“‘7'3W§X55> QY : ‘3: -qlz v , h.) = b) How far does the rock travel horizontally before it hits the ground? V _ " [fundamental] Xfi? X+=2Q+V¢x++léerrl3 ‘ 7 X6 : Om x;= vex-p. My): : lSW/s :(15er5-3) 7 - flx:O%A : WMmhofieow+QHLB += 55 c) At the instant the rock hits the ground, how far is it from the basket? staffing PM (mm a» mo = \l 751+ 123‘ d) At the instant the rock hits the ground calculate its velocity vector in component form. Vox : Vgx : Vry = Voy‘l’ay'l" = (’20%)+('7.3%2)(53) = —é>°l.OM/s Unrelated Miscellaneous Problems [ 10 Points Each] 4) A tire of 0500111 radius rotates in a vertical plane at a constant rate of 217 rev/min. Determine the acceleration experienced by a small stone caught in the tire tread when it is located at the tire top; ~ mainstay/20" Mi may was! 6" v2 ‘ r» beegiqi camvetsion «Eisédt “to = @I‘I'Wm)?‘ +mm ante/m3“ {Mo m 51 as gown bwi I 0% WOT [1"th View in WAKE fixes? m9§era so I‘m , using §+ maimed cm m7 £8 vw' awn/5 Ef; (’9 5) An F-14 Tomcat is launched from the aircraft carrier John C. Stennis by a steam catapult, attaining a speed of 175 knots in 2.503. Assuming uniform acceleration, how long was the catapult? 40% hswarsx MxmxflLx'm‘“ W V I mt m; sown 60 sec X0 x4 = X: x0 f V2( van/3+ : (omw1 ((ow/5)+éao%))(a,s.s) \/ Vo = Om/J V6 7- 670% TL: 2155 Vector Problems ‘ [ 5 Points Each ] 6) Given the § = 23? — 32" and 5 = —f + 337 — 22 vectors, perform the indicated operations upon them. a)‘Calculate g X 5; A A A x 'Y ‘2 (o--2)-(2--3) - (awn-(qua) -~ 82 2x+09-3z i: :iX i: ]y 6' J? +3A 23‘ a O -3 - - . . A ~ y _‘ 3 -2 +[(2 5)-(-) 0):)2 _ mamas. = t) q1+7q+€3 ' = {um i b) Determine the angle between g and . AX§:‘AHBIJMG ~‘\i><?‘+)7‘+e'q : dance—toss" : 3.61 = \Zm ‘6' :Jxfiyz-tza :J(\\>‘+.5‘+L-7~) I 3.714 IE=3m * ea ‘5 e: ‘ ‘i : O c) Calculate 21'? + 36’. RB: 2(Q§+O;~33) : who; "ég Aug: “#592? “$437); + (AzHBe)? 32‘ = 502+ 39 43) : a; i (ac—e: £6432: (LN-3X24- (0+q>9+(‘6*‘6’3 = “W419 @ d) If § and 5 represent velocities of two objects (with SI units), find the velocity of E with respect to E ,1 I 15¢? mgzcs- m mm mat» $2.25;ng m {Mm/€MEV‘+R‘ wer «*5 gm“ real”) .A‘ A' V v . V ' Mcch“"'<5> ’HN. branch a? WWW “*4 WW5 wijh wran a 5" mi” 1’ s“ ‘ 57"?”"18‘ 1”“ W ( 1‘ )kecmadymmld‘ ‘Unz >Wy a? Mea+ and Na e‘warés em WWW?" . 1 ' 4; - . . , are +£an: H1014“ wave #62 on exawfige ' Wat; “veg, ocea“ wakvuej 5’? ‘Hwe altsfame 0w" “'1 : E’Kf‘am“3“€flbm - mews *~ genma‘fwx ng .f_ Nam (20“ J 09440 - fiwéy of? “am awa/ gm bet/(avi0f ycovda’)- 39,56,“ QMWMW‘ FWD/“‘5 “ #6225; wiévh C5vw";§irm'§w‘+$ve bemwgffi M Wfiff wd’ gmsz M‘ a‘km‘g 'ng ( - -- («Mien 9‘? 125,90? made n 0mm“, WWKC§ devémpf‘d Md “$0, 1“ “day; @M‘fmcef K;!0§(am(K3)- bu;ch an i Théc‘y a€ 22e(.-4cv.'4.7 - away”: [,7 cwfifle, bud? (gm-f ,‘n mwggém [phyflifij chfilC swim ‘ bybsfrzm unfit; {k Mfigmiima,‘ 3‘“ W” wwfcm xg'emféig emafygg Kfiagmw 1n Cpflflfmi o/e‘cmi-Hom- a mesmemed flaw“; bang] an q lab eiocedmt Sév‘esl Rance SUQWE‘ME Mkfim- a nuML’Cf. a? iemcfiabif i5 m“[+.‘€{§;.32/ by a gMC‘ at: IDEA— M‘Q’Pfia‘fe, aim/9,1099, fiwjuq‘ge, Aug” Am 964 C (ALe‘fl/uk, twitter?” ‘ - 75 ' M 4‘: pi!) » fur“ . KeMnCK)‘ +ewle 1‘” ‘ 75%“ “gig: a; 7 L: 4 V‘ 3" Eqwdrong of m m(\mo|)‘ammw\+ {W}; : lbO‘ifi‘im 0‘ L3 9 - Mofi‘on {or O ' ‘ “b t {4qu “hammeflf— M. Wflr cwwge m g) C vaavrf Camdelqficd) - luminobx'fy ' 3 Mega Ve‘uhg‘ .. 0 .a ‘ /‘ V = AXA+ Ve‘cc§+y - d)%i+ AWGQE ALBUEM‘Ckm- = 4%+ {ee\c€A+f0.-\ _ ’02 :‘07‘335 K3 ‘92 = .042? Ma IL ‘- {0‘3 m3 T9d\a(\(rao()‘omlémty we: Accekesakon 5Tc(qol{an(b() - W6” “5W V: Vu-cx‘? V, Ct/Jr WK x: X0+VR<V0+V)+ XIV/1L “Oak K A szo+vo++ yacd’l X/q/‘anv‘ X 8 Va- A A A -v3+’2\a(x-x¢) XIV,“ "0+ Vaciar Algchm 75:43: (Ax+5x 9+(AW' 5V)? K—E (Ax-wmmwayw 11;: A r A A R‘ B (Ax Bx)x 4' (AYBY)Y Bx By 82‘ : [Aybz - ByA21§ ’[Axez‘ BxAz $4EAxBy“ BXijQ 73'? =\A"B|cose - 74x83 IAIlBh‘mG Vflmf; NJ Audemficn VecfoC’S Védfiu- exeml be!" majn‘w‘ucfe. .1 fiéwdéa‘fi _; ‘ Sanka-«5.. quévwifies have m déygcgiéh ., PobHr'o-a Vader * F A}?M as: 534+ I‘ dmphce mawé Wes“ , A? Vfdm' Adolf-4 Pg“ - V = V : fielding a fltw Waco MN m- “? was; a; f“? {u} Rx = RCOS e and R), 2 a : +1115] A’VAx A: ‘Axx‘hAya k t J ‘ ‘ Qahfiwe Mpwn ‘GOWXQ a? ‘effifev‘fc‘ yaw” vcimi-éy {£143.};{wa to.“ OFF/4+ a : Q‘s/oh? Qajefifie: i‘rasethd-QS Uhgf¢(m C((Cmfi‘AC Y: V0 5‘" 90+ “ V2 9+2 y: the; 9 X2 A? :2 va+ Mo‘ét‘oh X: Xe +VXG+ 2V? 52 o 2 "1' 3619+: CO 9 q : % Huazowffi 11‘0ng V0 "— 9X (fiadinj hesgh-k) Zws“a(xw%-y) 1 ‘ : lgfim'léo [hefem‘flng (an be (pagfirgvt ileum-(Q? gmvfig‘ygfi «an [’uflA‘ECfUfié “Nine; 26 hrzfimv'flanhw, {fiufiwfl “may 5% iflmgge I?“ F‘Vj‘mfi‘ Areas Under a 3mm“ mn lac 5%“ figgww a wejg‘fwfi S IDQQS can be posih‘ve. Of “cavitivm I.‘ 3 M30 {1? {5 m Some a5 M >\<=pe o€q v VJ. + 9w.ch Edged hm my?” Véy“ Jaw/w.) = 'O-BM/S V{Y Lvay + ayf =) 4': 2,035 @V‘yu‘cd QWMH”); algebtazo agam YWng r. amfdha-(e ayufim vedoafi can lea moved In a (cmdfngi’e gawk.“ V/a (myfié‘rj mm xogo/ Xe: S‘éwsmfiéiégw , aggro Accdefdiw twat)po a vaccn‘y Chitide X&: x‘, +Vox+ +fifiaji ? vex:_§§_: 637% (3(CAVG‘7] ;g w4fivc’ A n V0: 6.372‘4- {0.33" "‘9’: x;\{30m X: Xo+%x+*’/gax+g‘ : Vix‘i“ :. '70“! __, . g‘ :04 ‘9 x: Ivolcme+ a +: Xmme lVl=Ju.5)1-(.sv>2 : mm WY; Vey“ Ll 7% W50 X563 “V50 VG: V6 +V¢7y++ +f‘ ‘ » ...
View Full Document

{[ snackBarMessage ]}

Page1 / 6

Exam 1 - Physics 2014 7 Name 7 ~ r r w Exam 1 — Spring...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online