Midterm Exam 1

# Midterm Exam 1 - X fie/100-MATH 2153 Midterm I(50 pt x 2 =...

This preview shows pages 1–9. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: X) : fie/100 -MATH 2153 : Midterm I (50 pt x 2 = 100 pt). Namezr V" Show your work for full credit. / 1‘2 In mdsc. (hint: use integration by parts) 9 ‘7 3 ‘ -1 J ix‘lnmix: 335 ’w alpxge My 1. (8 pt) Evaluate 1,1: /nx dv= x; l x dm 3 H I ng jww: uv—fwim 2. (8 pt) Evaluate / tan3 mdz‘. f—LLan 3xdr =j1‘éom2x - {anx Ax : f(;¢cz>< 4) {Mk d): M"; £0~HK fanx ' tanﬂdK Aw = 5552259): '3 fSeczx‘éamcdx ' ffam ><cb< 3. (8 pt) Evaluate 27 ————d. /\/3—2a:—w2_ m ‘ X /J3*2x-x" B—lx -x‘= 3- (mm = 3- Lmzx +1) +4 = 4-way: f‘t’ ‘I'me" U: "H' d“ 5 5"“ xru" ud\ fm M=ZS?/\(9 a UK: Zwsa (ﬁe 2scne TL 2195949 4(Zsin9)‘: 1} 4- ‘kzn‘d 3 Wu'ss’ﬂ‘ :’ ' ‘1‘“2‘9 : 24059 V4 "‘ (253A&)I’ b :a “s z 25“".9 "'g 5A 58 f2\$1n9§19 ‘ fd9 1, 4. (8 pt) Evaluate fx—ll’rixé’K 5. (8 pt) Determine Whether the given integral is convergent or divergent. Evaluate if it is convergent. 00 _ 2 f :ce 1 das. 0 i- 1. r ->< J"; I} Xe d): q we ow: Zﬂ‘” “M” a”\ I; I.“ H75; e k .1: NM ( away-t M LEM —e_xz> : I, e_o& + £0 ’ B I 14.3” 0 «Ver (4% alwmdx 6. (5 pt) Find the arc length function for the curve y = x2 — %lnx taking Pg(1, 1) as the starting point. (10093? K" ‘93:“ (K) a . ¥b®=2x-é(%)32x~g; 1/l 4/ Hm =7)! +(zx— gm" [/243HZx-QLK‘AK . (.m «z _ 9/2 “‘1)‘ «slew { Wm"; 0‘“ “t 4 I” M fd: ﬂy I M=2+éx ., jazz Jduidx i rm 4 £ 2 2+in Jul-6:17;;wa ="f, w—m m “L “(4.1mm -I £4.41. *1M -1 gzwi)‘ a? - : m =— —————— ‘KH 3) 4/0”) L’Lhni) =’ ,1 (M43 .2 I.» rm fuzz“! \;=u~l “F”, 0 2W 01“ dV‘J‘“ { I .M'M *asw: _; MW Jfézv 1f"- g'é'ﬁ’” o 24v ’23; 2W 3 0.2V}: 4 2 0 24V 1 {' . Jc J ‘f’ﬁ" 0% i 9 vi '1 ’ J \F’\ I ,‘ + 2 6"?” J NM (é? 293+ " 2 «we 6 0 7. (5 pt) Consider the curve below. 3; = we“, 1 S a: 5 8. Set up, but do not evaluate, an integral for the area of the surface obtained by rotating the curve about the y—axis as O 8. (Bonus 2pt , {1% partial credit) Find the centroid of the region bounded by the curvesy=cosm,y:0,x:0, and m‘ZW/Q. I it A: joviéoSXﬂ‘X 2’ “3"”X 03. :5/h{§l’)v\$§n[¢>: / Some trigonometric identity. . 1 . . smA cos B = 5 (511101 — B) + s1n(A + B)), sinAsinB = é<cos(A — B) — cos(A + B)>, 1 2 cosAcosB = (COS(A — B) + cos(A + \$2+a2_a / dw - ltan-1(E)+C. ...
View Full Document

## This note was uploaded on 01/10/2012 for the course MATH 2153 taught by Professor Staff during the Spring '08 term at Oklahoma State.

### Page1 / 9

Midterm Exam 1 - X fie/100-MATH 2153 Midterm I(50 pt x 2 =...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online