au10_312ps3_sol

au10_312ps3_sol - ECE312 Autumn 2010 Problem Set 3...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE312 Autumn 2010: Problem Set 3 Solutions Problem 1 : Maxwell’s equations in free space with J = ρ V = 0: (i) ∇× E = − μ ∂ H ∂t , (ii) ∇· E = 0 , (iii) ∇× H = ǫ ∂ E ∂t , (iv) ∇· H = 0 Substitute given solutions into these equations to see if they are satisfied. (a) E = ˆ x cos (2 t + 2 z/c ) (i) ∇ × E = vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle ˆ x ˆ y ˆ z ∂ ∂x ∂ ∂y ∂ ∂z cos (2 t + 2 z/c ) vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle = +ˆ y ∂ ∂z cos parenleftbigg 2 t + 2 z c parenrightbigg = − ˆ y 2 c sin parenleftbigg 2 t + 2 z c parenrightbigg ⇒ − μ ∂ H ∂t H = ˆ y 2 μ c integraldisplay t-∞ dτ sin parenleftbigg 2 τ + 2 z c parenrightbigg = − ˆ y 1 η cos parenleftbigg 2 t + 2 z c parenrightbigg where η = radicalbig μ /ǫ . (ii) ∇ · E = ∂E x ∂x + ∂E y ∂y + ∂E z ∂z = ∂ ∂x cos parenleftbigg 5 t + 2 z c parenrightbigg = 0 (OK) (iii) ∇ × H = 1 η vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle ˆ x ˆ y ˆ z ∂ ∂x ∂ ∂y ∂ ∂z − cos (2 t + 2 z/c ) vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle = 1 η ˆ x ∂ ∂z cos parenleftbigg 2 t + 2 z c parenrightbigg = − ˆ x 2 ǫ sin parenleftbigg 2 t + 2 z c parenrightbigg = ǫ ∂ E ∂t (OK) (iv) ∇ · H = ∂H y /∂y = 0 (OK) The field (a) satisfies Maxwell’s equations.Maxwell’s equations....
View Full Document

This note was uploaded on 01/11/2012 for the course ECE 312 taught by Professor Johnson,j during the Fall '08 term at Ohio State.

Page1 / 5

au10_312ps3_sol - ECE312 Autumn 2010 Problem Set 3...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online