exam-1-100224 - MATH 682 Exam #1 Answer exactly four of the...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 682 Exam #1 Answer exactly four of the following six questions. Indicate which four you would like graded! 1. (10 points) Answer the following questions related to bound-subverting examples: (a) (4 points) It is known that the connectivity ( G ) of a graph G is bounded above by the minimum degree ( G ). Describe a method of constructing a connected graph with arbitrarily large but with a fixed, small . (b) (6 points) Let a flow f on a weighted digraph D be called addition-maximal if there is no valid flow g 6 = f such that g ( e ) f ( e ) for all edges; in other words, there is no valid flow resulting solely from adding flow to f . Describe (with an example, if such is useful) the construction of a weighted digraph and addition- maximal flow f such that | f | = 1 but D has maximal flow k for an arbitrarily large integer k . 2. (10 points) Let G be a graph containing a cycle C , such that there is a path P of length k between two vertices of G . Show that G contains a cycle of length...
View Full Document

This note was uploaded on 01/12/2012 for the course MATH 682 taught by Professor Wildstrom during the Spring '09 term at University of Louisville.

Page1 / 2

exam-1-100224 - MATH 682 Exam #1 Answer exactly four of the...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online