{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

3D Motion Estimation-1

3D Motion Estimation-1 - 3D Motion Estimation 3D model...

Info iconThis preview shows pages 1–18. Sign up to view the full content.

View Full Document Right Arrow Icon
3D Motion Estimation
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
3D model construction
Background image of page 2
3D model construction
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Video Manipulation
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Visual Motion Allows us to compute useful properties of the 3D world, with very little knowledge. Example: Time to collision
Background image of page 6
Time to Collision f f L L v v L L D D o l(t) l(t) An object of height An object of height  L  L  moves with constant   moves with constant  velocity  velocity  v: v: At time  At time  t=0 t=0  the object is at:  the object is at:     D(0) = D D(0) = D o At time  At time  t t  it is at   it is at  D(t) = D D(t) = D o  – vt  – vt It will crash with the camera at time: It will crash with the camera at time:     D( D( τ τ ) = D ) = D o  – v  – v τ τ  = 0  = 0     τ τ     = D = D o /v /v t=0 t=0 t t D(t) D(t)
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Time to Collision f f L L v v L L D D o l(t) l(t) t=0 t=0 t t D(t) D(t) The image of the object has size l(t): The image of the object has size l(t): Taking derivative wrt time: Taking derivative wrt time:
Background image of page 8
Time to Collision f f L L v v L L D D o l(t) l(t) t=0 t=0 t t D(t) D(t) And their ratio is: And their ratio is:
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Time to Collision f f L L v v L L D D o l(t) l(t) t=0 t=0 t t D(t) D(t) And  And  time to collision time to collision : : Can be directly  Can be directly  measured from  measured from  image image Can be found, without knowing  Can be found, without knowing  L L  or   or  D D o  or   or  v v  !!  !!
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Structure from Motion = × × r t z u ˆ 1 tr Z [ ] ( 29 ( 29 ( 29 r r z u × × × = ω ˆ 1 rot F t, ϖ r Z rot tr u u u + = u
Background image of page 14
Passive Navigation and Structure from Motion ( 29 ( 29 . velocity rotational and , velocity ional h translat motion wit rigid a with moves system The , T z y x T z y x ω ω ω t t t , , ϖ = = t ( 29 ( 29 f y x Z Y X T , , points image onto project , , points Scene = = r R ( 29 image in the observed is point scene a of , , velocity 3D the and z y x V V V = R ( 29 . 0 . , velocity as v u = r
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image Flow due to Rigid Motion The velocity of a point with respect to the XYZ coordinate system is X X W Z Z X V Y Y BZ U X β α α γ γ + - - = + - - = + - - = × - - = R t R ϖ y v x u Z Y y Z X x f = = = = = ; then , 1 Let + - - - + - - = - = = + - - - + - - = - = = x y Z W y x Z V Z Z Y Z Y Z Y v x y Z W x y Z U Z Z X Z X Z X u β α α γ β α γ β 2 2 ( 29 ( 29 rot tr 2 rot tr 2 1 1 v Z v x xy y Z yW V v u Z u y x xy Z xW U u + = - - + + + - = + = + + - + + - = γ β α γ β α ( 29 ( 29 ( 29 ( 29 r r z r t z z R r z R R z R r × × × + × × = = = ϖ 0 0 0 0 0 1 where , 1 : notation in vector Z Scaling ambiguity: We can compute the translation only up to a scale factor ( K t , KZ ) give the same flow as ( t , Z ).
Background image of page 16
Consider a 3D point P and its image: f f P P p p Z Z z z Using pinhole camera equation: Using pinhole camera equation:
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 18
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}