Pretest10.1-10.7Sol - Math 35 Name: J. Frewing Date : Math...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 35 Name: J. Frewing Date : Math 35: Chapter 10 Review 1. Solve each equation: a. x2=81 b. XZ=54 c. 2x2—20=12 X=iq Kata/25 X214 d. 3x2 + 48 = o e. (x — 3)2 = 24 f. (3x +1)2 —3l25 )(7—1'4i X"3 =i<§lm 3x+12i5 X =3i£blzo 3X=_/1~_5 X3321 g- 2. Solve using completing the itsquare: 1‘ 9a: a.x2—7x+12=0 [4: b. x2+2x—5=0 (9;) c. x2—2x+10=0 [i (1)1 X1—7Hg “a”? xtux +/=5+/ X‘—-£2<+/=‘/0+/ .. > . 4 02— a ’ (x—g)“=¢ (X+/)2'=éo (X4) - Hf x—7=:J; xtlatl? x—rL: 13L .5: :4 IX3‘liwl X: = 1 i 3. State tit): quadra¥ic formula: ’ x :tZL WC 1: .24.. 4. Deter' ' ' the uadratic equation has 1) Two real solutions, 2) One real solution, or 3 “No real solutions. (Hint: u5e the discriminant) C “3* Goiuhons a. 2x —5x—7=O “‘9 b. 3x2+2x=—4 c. x2+12x+36=0 3 "+QX+4‘0 x 191—4610 ulst— 40m) bz—LiamQE-WY‘T) b1—4a = +43%) g , 2351a, 2 4_ W a /D4A/ x4¢ = 8/ . =-JH. ' . Two fecal Solv‘hons No Real Soluhonj 0/76 Rea/Sol!)th 5. Solve eac using the quadratic formula: a. 3x2+7x=0 b. x2—11x=—30 c. 6a2+a—15=0 a=3 b=7 c=0 a=l b=-//c530 a,=(p b=l cvlfi £6 = -7r J49—4(3)(0) QC: IliillQl-MIM30) %= ‘/1V:?‘(:)(6 "53 71/5?) ,1; a Nil/41430 Q: = —_/_r\/Efl [J .2 X 1 “LT 310/ = ~7t7 2: Li %’ I +15}? [a ca: - __ 7- 0 an K= ~/ —_2 x 1 (a J 5 / a v6 ZED] J 3 x-a-égzl-Elx’ga MaTh 35 Name: J. Frewing DaTe : 2 — = 2 — = 2 — = d. x 6x+7 0 e. 2x +4x 3 0 f. x x;32/g_m—m g5: [01' 63“}(IllZl 9¢=~4IJIZVWQ ) at 2 3(2) 7 = /z‘ (x—Mo %= [at 319125 ¢= Will/That; '7" £2 = . '4" -.=‘”‘ J: X: 1mm" X 3145 ¢=—#r rzp , y ’1”? l a . . - " - "579’ 6. Solve each equaTIon: CK V x =_ .21 ,/,n 06" 1,12%— a. x=\/4x+60 M" WféolA‘qz’bT’JX2+2X—4=X fl 4 -g x1=4¥flpo /D=\l/00/ 2 “51:941. 60-1/- a~__ _, 0:0 X +g" r27 = a 75 26% 7:)(filpl20 ‘4 " “ff—“4”” £X-4’ =0 / 2/0 (yang 1" 36 E c. \lxz—x—12=x+3 d. 3—32: ¢2_¢,/a . X‘i-(ug-l-fi’ X X 2 LC ‘ “it: 041-}{4—22/161) ~7x =2/ #94 ~52 =X / 4. C%:.~3l X2429; f3 = 0 fiiL-‘ffl‘ LcML=X1 e. x4—13x2+36=0 f. 4m4—gm2+1=o “3-” “143? +3590 if: 9 M 952: y La Sufi/=0 mar—i ma” / or? u” ’ 51—3 + ‘ . =9 4 94 r3 4u—/)(LL~/)=0 = J. t/ M“ J ( LL= {p / /m :52. j g. (x2 -1)2 —(x2 —1)—6=0 2 .4 + u:% "/ “a 3/ 2’ wu1_u._u=0 243/:‘1. 7. DeTermine each 0 e o o s: 1) Does The parabola open up or down? 2) Find The VerTex of The parabola, 3) STaTe The axis of symmeTry, 4) Find The x- 1/ inTercepT, 5) Find The y-inTercepT and 6) Graph The parabola. ’fi’l a. f(x)=x2+5x b. f(x)=x2—2x—8 c. g(x)=—2x2—x+15 V, ’ Vcr4cx: (“ii/“g; Vcrftx:( U9 )/ Vet/46);" ("fi; ‘ All) .— - 5 "xl:~ ""D' :r : :'-I Am oysymm: X ‘ 2?" ggjjfipiym OZWX r LC 1 ' ' -r h ‘ l I I ._. 35:15: {0:90) 17—50) "M f ’ (£01540) xe/mL (—310) (g. .0) mm» (0m WW" 0/ y’mr ( o, m“) d. h(x) = (x — 3)2 + 4 e. h(x) = —(x + 2)2 — 3 f. m(x) = 4(x + 4)2 —1 Var-lax (3,61) MCI/Tex! (“vi/‘39 Vtr+cx ( ~61, 4)” “1/ Am 0365),”).- x= 3 Axis D/jym: x; -.2 {nifny " ‘ Opens “40 UPC“??? “9"”? . »3 Q '~ n “e MaTh 35 Name: J. Frewing DaTe : 8. The Norco Choir is having a performance. They have esTimaTed The income for The spring performance To be esTimaTed by The following funcTion I(X)=-X2+22X—30 _ I where x is The price of each TickeT and I represenTs The income. in nu nclrccls OJt d 0/ I 4‘ F5?- a. How much should They charge for each TickeT To maximize Their income? ab : "£4 ._~27_¢2_ Til/1' 974; 92('/J - 2,2, ‘ b. WhaT is The maximum income? 1/”): $9100 9. Josh Tosses a ball upward from The Top of a 60 fooT building. The heighT, H(T), of The ball aT any Time TAcan be deTermined by The funcTions sewn/15 H(f) = —167‘2 + 88}? 60 a. AT whaT Time will The ball aTTain iTs maximum heighT? $2,755 mane/5’ 034 gm?) 3 L c. WhaT is The maximum heighT? {we X‘ . ‘ 6/ 1 Solve each InequaIITy: a. (x—3)(x+4)>0 b. x2—11x+3020 c.x2+x5—12 d. (x—6)(x+2)(x—1)>O ...
View Full Document

This note was uploaded on 01/13/2012 for the course MATH 35 taught by Professor Janetfrewing during the Fall '11 term at Riverside Community College.

Page1 / 3

Pretest10.1-10.7Sol - Math 35 Name: J. Frewing Date : Math...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online