Exam 1 - Spring 2004

# Exam 1 - Spring 2004 - π x x(8 points 3 Solve 29 xy x dx...

This preview shows page 1. Sign up to view the full content.

Differential Equations Exam #1 Spring 2004 Name ________________________________ You must show all your work neatly and in numerical order on the paper provided. Solutions without correct supporting work will not be accepted. Please do not write on the backs of your pages. Unless indicated otherwise the problem is worth 12 points. NO CALCULATORS MAY BE USED ON THIS EXAM . 1. Give the order of the differential equation and classify the equation as either linear or nonlinear. (4 points each) a. ( 29 ( 29 2 cos sin = - y y θ b. ( 29 u r u dr du dr u d + = + + cos 2 2 2. Use the fact that t c t c x sin cos 2 1 + = is a two-parameter family of solutions of 0 = + x x to find a solution of the initial-value problem consisting of the differential equation and the initial conditions ( 29 ( 29 0 6 / , 2 / 1 6 / = =
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: π x x . (8 points) 3. Solve: ( 29 xy x dx dy x 8 2 4 2-= + 4. Solve: xy y dx dy x-= 2 5. Solve the Bernoulli equation: 2 5 y y y + = ′ 6. Solve: ( 29 2 2 = + + dy x dx yx y 7. Solve the “almost exact” equation: ( 29 9 4 6 2 = + + dy x y dx xy 8. A large tank is filled with 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped into the tank at a rate of 10 gal/min. The well-mixed solution is pumped out of tank at a rate of 5 gal/min. Find the number ) ( t A of pounds of salt in the tank at time t . 9. Use reduction of order to find the general solution of the differential equation 9 = + ′ ′ y y given that x y 3 sin 1 = is a solution....
View Full Document

## This note was uploaded on 01/13/2012 for the course MATH 2914 taught by Professor Pamelasatterfield during the Fall '10 term at NorthWest Arkansas Community College.

Ask a homework question - tutors are online