This preview shows pages 1–2. Sign up to view the full content.
Prof. Bradley Siwick
Page 1/3
Physics 257 Asst 0
Physics 257: Assignment 0
Read Chs. 1 and 2 of the course text (I. Hughes and T. Hase, Measurements and their uncertainties
(Oxford, 2010) before starting this assignment. These two chapters will introduce you to ‘mean’,
‘standard deviation’ and ‘significant figures’.
We will revisit these concepts in the next lecture.
1.
(This problem must be done by hand without the use of a computer for the calculations) A
low temperature physicist measured the temperature of her cryostat five different times and
found 1.65, 1.71, 1.7, 1.67, 1.66 (in Kelvin)
a.
By just looking at the five temperatures given above (i.e. only an approximate mental
‘calculation’) you should be able estimate the mean temperature.
Write down your
estimate before going on to b).
b.
Write the equation for the mean of this data sample. What is the mean temperature of
the cryostat to three significant figures? Compare with your estimate above.
c.
By just looking at the five temperatures, you should be able to make a reasonable
estimate of the standard deviation of the measurements.
Write down your estimate
before going on to d)
d.
Write the equation for the standard deviation. What is the standard deviation of the
measurements to three significant figures? Compare with your estimate above.
e.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
This is the end of the preview. Sign up
to
access the rest of the document.
This note was uploaded on 01/11/2012 for the course MATH 100 taught by Professor Loveys during the Fall '11 term at McGill.
 Fall '11
 Loveys
 Standard Deviation

Click to edit the document details