TIA_thesis - A 2.5 GHz Optoelectronic Amplifier in 0.18 m...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
A 2.5 GHz Optoelectronic Amplifier in 0.18 µ m CMOS by Carlos Roberto Calvo A Thesis Submitted to the Faculty of the Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering May 2003 Approved: _________________________________ Professor John A. McNeill Thesis Advisor _________________________________ Professor Stephen J. Bitar Thesis Committee _________________________________ Professor Demetrios Papageorgiou Thesis Committee
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Abstract The ever-growing need for high speed data transmission is driven by multimedia and telecommunication demands. Traditional metallic media, such as copper coaxial cable, prove to be a limiting factor for high speed communications. Fiber optic methods provide a feasible solution that lacks the limitations of metallic mediums, including low bandwidth, cross talk caused by magnetic induction, and susceptibility to static and RF interferences. The first scientists to work with fibers optics started in 1970. One of the early challenges they faced was to produce glass fiber that was pure enough to be equal in performance with copper based media. Since then, the technology has advanced tremendously in terms of performance, quality, and consistency. The advancement of fiber optic communication has met its limits, not in the purity of its fiber media used to guide the data-modulated light wave, but in the conversion back and forth between electric signals to light. A high speed optic receiver must be used to convert the incident light into electrical signals. This thesis describes the design of a 2.5 GHz Optoelectronic Amplifier, the front end of an optic receiver. The discussion includes a survey of feasible topologies and an assessment of circuit techniques to enhance performance. The amplifier was designed and realized in a TSMC 0.18 µ m CMOS process.
Background image of page 2
Acknowledgements I would like to thank the following for making this thesis possible: Professor John McNeill for technical advice, funding, the opportunity to work in his laboratory, and his patience. Professor Stephen Bitar and Professor Demetrios Papageorgiou for serving on my thesis committee. Chengxin, Tony, Pavan, Ping, and Renato for the fond memories in the VLSI Lab and at ISSCC. Brian, Jennifer, Mara, and Matt for their help along the way. My family for their love and support.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Table of Contents CHAPTER 1: INTRODUCTION . ............................................................................................................... 1 CHAPTER 2: SYSTEM OVERVIEW. ....................................................................................................... 4 2.1 PHOTO-DETECTOR. ................................................................................................................................ 4 2.2 PREAMPLIFIER. .................................................................................................................................... 10 2.3 POST AMPLIFIER. ................................................................................................................................. 12 2.4 CLOCK AND DATA RECOVERY . ........................................................................................................... 13 2.5 DEFINITION OF SPECIFICATIONS. ......................................................................................................... 14 2.6 CONCLUSION. ...................................................................................................................................... 16 CHAPTER 3: TRANSIMPEDANCE AMPLIFIER . ............................................................................... 17 3.1 TRANSIMPEDANCE AMPLIFIER SYSTEM. .............................................................................................. 17 3.2 INVERTER CONFIGURATIONS. .............................................................................................................. 20 3.2.1 Current Load . ............................................................................................................................. 21 3.2.2 Push-Pull . ................................................................................................................................... 24 3.2.3 Cascode. ...................................................................................................................................... 28 3.3 CONCLUSION. ...................................................................................................................................... 33 CHAPTER 4: LIMITING AMPLIFIER. .................................................................................................. 34 4.1 RESISTIVE LOAD DIFFERENTIAL AMPLIFIER. ........................................................................................ 36 4.2 INDUCTIVE LOAD DIFFERENTIAL PAIR. ............................................................................................... 39 4.3 DIFFERENTIAL PAIR WITH ACTIVE INDUCTORS . .................................................................................. 42 4.4 CONCLUSION. ...................................................................................................................................... 49 CHAPTER 5: OFFSET CORRECTION . ................................................................................................. 50 5.1 LOW PASS FILTER AND AC COUPLING. ............................................................................................... 51 5.2 OFFSET FEEDBACK. ............................................................................................................................. 53 5.3 CONCLUSION. ...................................................................................................................................... 57 CHAPTER 6: VERIFICATION, TESTING AND RESULTS. ............................................................... 58 6.1 TRANSIMPEDANCE AMPLIFIER . ........................................................................................................... 58 6.2 OPTOELECTRONIC AMPLIFIER SYSTEM . .............................................................................................. 59 6.3 TEST CHIP . .......................................................................................................................................... 60 6.4 EVALUATION BOARD . ......................................................................................................................... 63 i
Background image of page 4
6.5 AMPLIFIER MEASUREMENTS .
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/12/2012 for the course EECS 413 taught by Professor Staff during the Spring '08 term at University of Michigan.

Page1 / 111

TIA_thesis - A 2.5 GHz Optoelectronic Amplifier in 0.18 m...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online