Stereopsis

Stereopsis - Stereopsis Mark Twain at Pool Table", no...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Stereopsis
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Mark Twain at Pool Table", no date, UCR Museum of Photography
Background image of page 2
Woman getting eye exam during immigration procedure at Ellis Island, c. 1905 - 1920   , UCR Museum of Phography
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Why Stereo Vision? 2D images project 3D points into 2D: O O P’=Q’ P’=Q’ P P Q Q 3D Points on the same viewing line have the same 2D  image: 2D imaging results in depth information loss
Background image of page 4
Stereo Assumes (two) cameras. Known positions. Recover depth.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Recovering Depth Information: O O 2 P’ P’ 2 =Q’ =Q’ 2 P P Q Q O O 1 P’ P’ 1 Q’ Q’ 1 Depth can be recovered with two images and triangulation.  Depth can be recovered with two images and triangulation. 
Background image of page 6
Finding Correspondences: O O 2 P’ P’ Q’ Q’ 2 P P Q Q O O 1 P’ P’ 1 Q’ Q’ 1
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Finding Correspondences:
Background image of page 8
3D Reconstruction O O 2 P’ P’ 2 P P O O 1 P’ P’ 1 We must solve the correspondence problem first! We must solve the correspondence problem first!
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Stereo correspondence Determine Pixel Correspondence Pairs of points that correspond to same scene point Epipolar Constraint Reduces correspondence problem to 1D search along conjugate epipolar lines epipolar plane epipolar line epipolar line epipolar line epipolar line (Seitz)
Background image of page 10
Image planes of cameras are parallel. Focal points are at same height. Focal lengths same.
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 35

Stereopsis - Stereopsis Mark Twain at Pool Table", no...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online