This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ACS I Linear Algebra Homework # 2 Due: Thursday, January 27 1. Suppose A is a symmetric, positive definite tridiagonal matrix given by A = a 1 b 1 b 1 a 2 b 2 b 2 a 3 b 3 . . . . . . . . . . . . . . . . . . . . . . . . b n 2 a n 1 b n 1 b n 1 a n a. Derive the equations for obtaining a Cholesky factorization of this tridiagonal matrix, taking advantage of the structure and then write pseudo code for the algorithm. b. Determine the equations for solving the linear system Avectorx = vector b once we have the fac torization A = LL T ; i.e., write the equations for the forward and back solves. Then write pseudo code for your algorithms. c. Determine the operation count for the factorization and the forward and back solves....
View Full
Document
 Spring '11
 staff

Click to edit the document details